These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 37103886)
1. Cancer Models on Chip: Paving the Way to Large-Scale Trial Applications. Gil JF; Moura CS; Silverio V; Gonçalves G; Santos HA Adv Mater; 2023 Sep; 35(35):e2300692. PubMed ID: 37103886 [TBL] [Abstract][Full Text] [Related]
2. Breast cancer models: Engineering the tumor microenvironment. Bahcecioglu G; Basara G; Ellis BW; Ren X; Zorlutuna P Acta Biomater; 2020 Apr; 106():1-21. PubMed ID: 32045679 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation. Zheng W; Xie R; Liang X; Liang Q Small; 2022 Apr; 18(16):e2105867. PubMed ID: 35072338 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic systems for modeling digestive cancer: a review of recent progress. Razavi Z; Soltani M; Pazoki-Toroudi H; Dabagh M Biomed Phys Eng Express; 2024 Aug; 10(5):. PubMed ID: 39142294 [No Abstract] [Full Text] [Related]
5. Tumour-on-a-chip: microfluidic models of tumour morphology, growth and microenvironment. Tsai HF; Trubelja A; Shen AQ; Bao G J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28637915 [TBL] [Abstract][Full Text] [Related]
6. Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments. Guimarães CF; Gasperini L; Reis RL Adv Exp Med Biol; 2022; 1379():205-230. PubMed ID: 35760993 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics-based in vivo mimetic systems for the study of cellular biology. Kim D; Wu X; Young AT; Haynes CL Acc Chem Res; 2014 Apr; 47(4):1165-73. PubMed ID: 24555566 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Chung BG; Lee KH; Khademhosseini A; Lee SH Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780 [TBL] [Abstract][Full Text] [Related]
9. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388 [TBL] [Abstract][Full Text] [Related]
10. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics. Barata D; van Blitterswijk C; Habibovic P Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719 [TBL] [Abstract][Full Text] [Related]
11. Bottom-up biofabrication using microfluidic techniques. Nie M; Takeuchi S Biofabrication; 2018 Sep; 10(4):044103. PubMed ID: 30182928 [TBL] [Abstract][Full Text] [Related]
13. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. DePalma TJ; Sivakumar H; Skardal A Adv Drug Deliv Rev; 2022 Jan; 180():114067. PubMed ID: 34822927 [TBL] [Abstract][Full Text] [Related]
14. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. Liu X; Su Q; Zhang X; Yang W; Ning J; Jia K; Xin J; Li H; Yu L; Liao Y; Zhang D Biosensors (Basel); 2022 Nov; 12(11):. PubMed ID: 36421163 [TBL] [Abstract][Full Text] [Related]
15. Evaluating Biomaterial- and Microfluidic-Based 3D Tumor Models. Carvalho MR; Lima D; Reis RL; Correlo VM; Oliveira JM Trends Biotechnol; 2015 Nov; 33(11):667-678. PubMed ID: 26603572 [TBL] [Abstract][Full Text] [Related]
16. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
17. Biomaterials for Mimicking and Modelling Tumor Microenvironment. Das R; Fernandez JG Adv Exp Med Biol; 2022; 1379():139-170. PubMed ID: 35760991 [TBL] [Abstract][Full Text] [Related]