BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37104475)

  • 1. Lizards exploit the changing optics of developing chromatophore cells to switch defensive colors during ontogeny.
    Zhang G; Yallapragada VJ; Halperin T; Wagner A; Shemesh M; Upcher A; Pinkas I; McClelland HLO; Hawlena D; Palmer BA
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2215193120. PubMed ID: 37104475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration.
    Kuriyama T; Miyaji K; Sugimoto M; Hasegawa M
    Zoolog Sci; 2006 Sep; 23(9):793-9. PubMed ID: 17043401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards.
    Saenko SV; Teyssier J; van der Marel D; Milinkovitch MC
    BMC Biol; 2013 Oct; 11():105. PubMed ID: 24099066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coloration reflects skin pterin concentration in a red-tailed lizard.
    Cuervo JJ; Belliure J; Negro JJ
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Mar; 193():17-24. PubMed ID: 26658422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trade-off between color and size in lizards' conspicuous tails.
    Guidi RDS; São-Pedro VA; da Silva HR; Costa GC; Pessoa DMA
    Behav Processes; 2021 Nov; 192():104496. PubMed ID: 34492324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fitness consequences of the autotomous blue tail in lizards: an empirical test of predator response using clay models.
    Watson CM; Roelke CE; Pasichnyk PN; Cox CL
    Zoology (Jena); 2012 Oct; 115(5):339-44. PubMed ID: 22938695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic Analysis of Skin Color in Anole Lizards.
    de Mello PLH; Hime PM; Glor RE
    Genome Biol Evol; 2021 Jul; 13(7):. PubMed ID: 33988681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores.
    Mäthger LM; Hanlon RT
    Cell Tissue Res; 2007 Jul; 329(1):179-86. PubMed ID: 17410381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light reflection from crystal platelets in iridophores determines green or brown skin coloration in Takydromus lizards.
    Kuriyama T; Esashi J; Hasegawa M
    Zoology (Jena); 2017 Apr; 121():83-90. PubMed ID: 27939816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Embryonic developmental process governing the conspicuousness of body stripes and blue tail coloration in the lizard Plestiodon latiscutatus.
    Kuriyama T; Hasegawa M
    Evol Dev; 2017 Jan; 19(1):29-39. PubMed ID: 27882652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divisionistic generation of skin hue and the change of shade in the scalycheek damselfish, Pomacentrus lepidogenys.
    Kasukawa H; Oshima N
    Pigment Cell Res; 1987; 1(3):152-7. PubMed ID: 3508273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fish pigmentation. Response to Comment on "Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish".
    Singh AP; Frohnhöfer HG; Irion U; Nüsslein-Volhard C
    Science; 2015 Apr; 348(6232):297. PubMed ID: 25883351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dermal chromatophore unit.
    Bagnara JT; Taylor JD; Hadley ME
    J Cell Biol; 1968 Jul; 38(1):67-79. PubMed ID: 5691979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gross anatomy and ultrastructure of Moorish Gecko, Tarentola mauritanica skin.
    Avallone B; Tizzano M; Cerciello R; Buglione M; Fulgione D
    Tissue Cell; 2018 Apr; 51():62-67. PubMed ID: 29622089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A transmission electron microscopic (TEM) method for determining structural colors reflected by lizard iridophores.
    Morrison RL
    Pigment Cell Res; 1995 Feb; 8(1):28-36. PubMed ID: 7792252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure-function relationships of a natural nanoscale photonic device in cuttlefish chromatophores.
    Deravi LF; Magyar AP; Sheehy SP; Bell GR; Mäthger LM; Senft SL; Wardill TJ; Lane WS; Kuzirian AM; Hanlon RT; Hu EL; Parker KK
    J R Soc Interface; 2014 Apr; 11(93):20130942. PubMed ID: 24478280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical regulation of pigment motility in vertebrate chromatophores: a review of physiological color change mechanisms.
    Ligon RA; McCartney KL
    Curr Zool; 2016 Jun; 62(3):237-252. PubMed ID: 29491911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fossilized biophotonic nanostructures reveal the original colors of 47-million-year-old moths.
    McNamara ME; Briggs DE; Orr PJ; Wedmann S; Noh H; Cao H
    PLoS Biol; 2011 Nov; 9(11):e1001200. PubMed ID: 22110404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine structural observations relating to the production of color by the iridophores of a lizard. Anolis carolinensis.
    Rohrlich ST; Porter KR
    J Cell Biol; 1972 Apr; 53(1):38-52. PubMed ID: 5013601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piebaldism and chromatophore development in reptiles are linked to the tfec gene.
    Garcia-Elfring A; Sabin CE; Iouchmanov AL; Roffey HL; Samudra SP; Alcala AJ; Osman RS; Lauderdale JD; Hendry AP; Menke DB; Barrett RDH
    Curr Biol; 2023 Feb; 33(4):755-763.e3. PubMed ID: 36702128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.