These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 37104698)
21. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Wang Y; Sun Y; Wang F; Wang H; Hu J Biomed Pharmacother; 2023 Dec; 169():115866. PubMed ID: 37951026 [TBL] [Abstract][Full Text] [Related]
22. Co-targeting Bulk Tumor and CSCs in Clinically Translatable TNBC Patient-Derived Xenografts via Combination Nanotherapy. Sulaiman A; McGarry S; El-Sahli S; Li L; Chambers J; Phan A; Côté M; Cron GO; Alain T; Le Y; Lee SH; Liu S; Figeys D; Gadde S; Wang L Mol Cancer Ther; 2019 Oct; 18(10):1755-1764. PubMed ID: 31308079 [TBL] [Abstract][Full Text] [Related]
23. A MOF-Based Potent Ferroptosis Inducer for Enhanced Radiotherapy of Triple Negative Breast Cancer. Zeng L; Ding S; Cao Y; Li C; Zhao B; Ma Z; Zhou J; Hu Y; Zhang X; Yang Y; Duan G; Bian XW; Tian G ACS Nano; 2023 Jul; 17(14):13195-13210. PubMed ID: 37256771 [TBL] [Abstract][Full Text] [Related]
24. Sequentially-targeted biomimetic nano drug system for triple-negative breast cancer ablation and lung metastasis inhibition. Fan J; Liu B; Long Y; Wang Z; Tong C; Wang W; You P; Liu X Acta Biomater; 2020 Sep; 113():554-569. PubMed ID: 32569637 [TBL] [Abstract][Full Text] [Related]
25. Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Liao WS; Ho Y; Lin YW; Naveen Raj E; Liu KK; Chen C; Zhou XZ; Lu KP; Chao JI Acta Biomater; 2019 Mar; 86():395-405. PubMed ID: 30660004 [TBL] [Abstract][Full Text] [Related]
26. Time and Space Dual-Blockade Strategy for Highly Invasive Nature of Triple-Negative Breast Cancer in Enhanced Sonodynamic Therapy Based on Fe-MOF Nanoplatforms. Cao C; Lu Y; Pan X; Lin Y; Fan S; Niu J; Lin S; Tan H; Wang Y; Cui S; Liu Y Adv Healthc Mater; 2024 Jun; 13(15):e2304249. PubMed ID: 38325812 [TBL] [Abstract][Full Text] [Related]
27. Aminoflavone-loaded EGFR-targeted unimolecular micelle nanoparticles exhibit anti-cancer effects in triple negative breast cancer. Brinkman AM; Chen G; Wang Y; Hedman CJ; Sherer NM; Havighurst TC; Gong S; Xu W Biomaterials; 2016 Sep; 101():20-31. PubMed ID: 27267625 [TBL] [Abstract][Full Text] [Related]
28. Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. Yin W; Chang J; Sun J; Zhang T; Zhao Y; Li Y; Dong H J Mater Chem B; 2023 Feb; 11(6):1171-1190. PubMed ID: 36650960 [TBL] [Abstract][Full Text] [Related]
29. Fibronectin-Targeting and Cathepsin B-Activatable Theranostic Nanoprobe for MR/Fluorescence Imaging and Enhanced Photodynamic Therapy for Triple Negative Breast Cancer. Wang Y; Jiang L; Zhang Y; Lu Y; Li J; Wang H; Yao D; Wang D ACS Appl Mater Interfaces; 2020 Jul; 12(30):33564-33574. PubMed ID: 32633941 [TBL] [Abstract][Full Text] [Related]
30. Correction to "A Carrier-Free Nanomedicine Enables Apoptosis-Ferroptosis Synergistic Breast Cancer Therapy by Targeting Subcellular Organelles". Zhu J; Zhang K; Zhou Y; Wang R; Gong L; Wang C; Zhong K; Liu W; Feng F; Qu W ACS Appl Mater Interfaces; 2023 Jun; 15(24):29653. PubMed ID: 37294837 [No Abstract] [Full Text] [Related]
31. Multifunctional Theranostic Nanoparticles for Enhanced Tumor Targeted Imaging and Synergistic FUS/Chemotherapy on Murine 4T1 Breast Cancer Cell. Kang Z; Yang M; Feng X; Liao H; Zhang Z; Du Y Int J Nanomedicine; 2022; 17():2165-2187. PubMed ID: 35592098 [TBL] [Abstract][Full Text] [Related]
32. PGM5P3-AS1 regulates MAP1LC3C to promote cell ferroptosis and thus inhibiting the malignant progression of triple-negative breast cancer. Qi L; Sun B; Yang B; Lu S Breast Cancer Res Treat; 2022 Jun; 193(2):305-318. PubMed ID: 35325342 [TBL] [Abstract][Full Text] [Related]
33. Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Fu J; Li T; Yang Y; Jiang L; Wang W; Fu L; Zhu Y; Hao Y Biomaterials; 2021 Jan; 268():120537. PubMed ID: 33260096 [TBL] [Abstract][Full Text] [Related]
34. Upconverting Nanocarriers Enable Triggered Microtubule Inhibition and Concurrent Ferroptosis Induction for Selective Treatment of Triple-Negative Breast Cancer. Zhu J; Dai P; Liu F; Li Y; Qin Y; Yang Q; Tian R; Fan A; Medeiros SF; Wang Z; Zhao Y Nano Lett; 2020 Sep; 20(9):6235-6245. PubMed ID: 32804509 [TBL] [Abstract][Full Text] [Related]
35. ROS-responsive fluorinated polyethyleneimine vector to co-deliver shMTHFD2 and shGPX4 plasmids induces ferroptosis and apoptosis for cancer therapy. Yang S; Wong KH; Hua P; He C; Yu H; Shao D; Shi Z; Chen M Acta Biomater; 2022 Mar; 140():492-505. PubMed ID: 34879292 [TBL] [Abstract][Full Text] [Related]
37. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Feng W; Shi W; Liu S; Liu H; Liu Y; Ge P; Zhang H Adv Healthc Mater; 2022 Jan; 11(2):e2101926. PubMed ID: 34738742 [TBL] [Abstract][Full Text] [Related]
38. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Li G; Lin SS; Yu ZL; Wu XH; Liu JW; Tu GH; Liu QY; Tang YL; Jiang QN; Xu JH; Huang QL; Wu LX Biochem Pharmacol; 2022 Dec; 206():115329. PubMed ID: 36309080 [TBL] [Abstract][Full Text] [Related]
39. Wang Z; Yang C; Zhang H; Gao Y; Xiao M; Wang Z; Yang L; Zhang J; Ren C; Liu J ACS Nano; 2022 Sep; 16(9):14644-14657. PubMed ID: 36048539 [TBL] [Abstract][Full Text] [Related]
40. Mitochondria Targeting and Destabilizing Hyaluronic Acid Derivative-Based Nanoparticles for the Delivery of Lapatinib to Triple-Negative Breast Cancer. Lee SY; Cho HJ Biomacromolecules; 2019 Feb; 20(2):835-845. PubMed ID: 30566834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]