BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37105043)

  • 1. The mechanisms of optimal nitrogen conditions to accelerate flowering of Chrysanthemum vestitum under short day based on transcriptome analysis.
    Zhang Q; Li J; Deng C; Chen J; Han W; Yang X; Wang Z; Dai S
    J Plant Physiol; 2023 Jun; 285():153982. PubMed ID: 37105043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide identification and characterization analysis of RWP-RK family genes reveal their role in flowering time of Chrysanthemum lavandulifolium.
    Zhang Q; Li J; Wen X; Deng C; Yang X; Dai S
    BMC Plant Biol; 2023 Apr; 23(1):197. PubMed ID: 37061708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis of differentially expressed genes in the floral transition of the summer flowering chrysanthemum.
    Ren L; Liu T; Cheng Y; Sun J; Gao J; Dong B; Chen S; Chen F; Jiang J
    BMC Genomics; 2016 Aug; 17(1):673. PubMed ID: 27552984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive expression of CsGI alters critical night length for flowering by changing the photo-sensitive phase of anti-florigen induction in chrysanthemum.
    Oda A; Higuchi Y; Hisamatsu T
    Plant Sci; 2020 Apr; 293():110417. PubMed ID: 32081265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of the CONSTANS-like gene family in the short-day plant Chrysanthemum lavandulifolium.
    Fu J; Yang L; Dai S
    Mol Genet Genomics; 2015 Jun; 290(3):1039-54. PubMed ID: 25523304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoperiod-insensitive floral transition in chrysanthemum induced by constitutive expression of chimeric repressor CsLHY-SRDX.
    Oda A; Higuchi Y; Hisamatsu T
    Plant Sci; 2017 Jun; 259():86-93. PubMed ID: 28483056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gibberellic Acid Signaling Is Required to Induce Flowering of Chrysanthemums Grown under Both Short and Long Days.
    Dong B; Deng Y; Wang H; Gao R; Stephen GK; Chen S; Jiang J; Chen F
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28604637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoperiodic control of FT-like gene ClFT initiates flowering in Chrysanthemum lavandulifolium.
    Fu J; Wang L; Wang Y; Yang L; Yang Y; Dai S
    Plant Physiol Biochem; 2014 Jan; 74():230-8. PubMed ID: 24316581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums.
    Oda A; Narumi T; Li T; Kando T; Higuchi Y; Sumitomo K; Fukai S; Hisamatsu T
    J Exp Bot; 2012 Feb; 63(3):1461-77. PubMed ID: 22140240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Day light quality affects the night-break response in the short-day plant chrysanthemum, suggesting differential phytochrome-mediated regulation of flowering.
    Higuchi Y; Sumitomo K; Oda A; Shimizu H; Hisamatsu T
    J Plant Physiol; 2012 Dec; 169(18):1789-96. PubMed ID: 22840324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CsTFL1, a constitutive local repressor of flowering, modulates floral initiation by antagonising florigen complex activity in chrysanthemum.
    Higuchi Y; Hisamatsu T
    Plant Sci; 2015 Aug; 237():1-7. PubMed ID: 26089146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-Transcriptome Analysis of Differentially Expressed Genes in the Vegetative Buds, Floral Buds and Buds of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q
    PLoS One; 2015; 10(5):e0128009. PubMed ID: 26009891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of the chrysanthemum transcriptome with DNA methylation inhibitors treatment and silencing MET1 lines.
    Kang D; Khan MA; Song P; Liu Y; Wu Y; Ai P; Li Z; Wang Z
    BMC Plant Biol; 2023 Jan; 23(1):47. PubMed ID: 36670371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum.
    Wang L; Sun J; Ren L; Zhou M; Han X; Ding L; Zhang F; Guan Z; Fang W; Chen S; Chen F; Jiang J
    Plant Biotechnol J; 2020 Jul; 18(7):1562-1572. PubMed ID: 31883436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in chrysanthemum.
    Cheng H; Zhang J; Zhang Y; Si C; Wang J; Gao Z; Cao P; Cheng P; He Y; Chen S; Chen F; Jiang J
    J Exp Bot; 2023 Aug; 74(14):4063-4076. PubMed ID: 37018757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches.
    Smykal P; Gennen J; De Bodt S; Ranganath V; Melzer S
    Plant Mol Biol; 2007 Oct; 65(3):233-42. PubMed ID: 17660946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Constitutive Expression of a Chrysanthemum ERF Transcription Factor Influences Flowering Time in Arabidopsis thaliana.
    Xing X; Jiang J; Huang Y; Zhang Z; Song A; Ding L; Wang H; Yao J; Chen S; Chen F; Fang W
    Mol Biotechnol; 2019 Jan; 61(1):20-31. PubMed ID: 30448907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flowering retardation by high temperature in chrysanthemums: involvement of FLOWERING LOCUS T-like 3 gene repression.
    Nakano Y; Higuchi Y; Sumitomo K; Hisamatsu T
    J Exp Bot; 2013 Feb; 64(4):909-20. PubMed ID: 23314814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of chrysanthemum flowering through integration with an aging pathway.
    Wei Q; Ma C; Xu Y; Wang T; Chen Y; Lü J; Zhang L; Jiang CZ; Hong B; Gao J
    Nat Commun; 2017 Oct; 8(1):829. PubMed ID: 29018260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.