These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37105288)
1. Silica-derived materials from agro-industrial waste biomass: Characterization and comparative studies. Morales-Paredes CA; Rodríguez-Linzán I; Saquete MD; Luque R; Osman SM; Boluda-Botella N; Joan Manuel RD Environ Res; 2023 Aug; 231(Pt 1):116002. PubMed ID: 37105288 [TBL] [Abstract][Full Text] [Related]
2. Synthesis, analysis, and multi-faceted applications of solid wastes-derived silica nanoparticles: a comprehensive review (2010-2022). Malpani SK; Goyal D Environ Sci Pollut Res Int; 2023 Mar; 30(11):28321-28343. PubMed ID: 36331737 [TBL] [Abstract][Full Text] [Related]
3. Rice husk waste into various template-engineered mesoporous silica materials for different applications: A comprehensive review on recent developments. Gebretatios AG; Kadiri Kanakka Pillantakath AR; Witoon T; Lim JW; Banat F; Cheng CK Chemosphere; 2023 Jan; 310():136843. PubMed ID: 36243081 [TBL] [Abstract][Full Text] [Related]
4. Green synthesis and characterization of UKMRC-8 rice husk-derived mesoporous silica nanoparticle for agricultural application. Dorairaj D; Govender N; Zakaria S; Wickneswari R Sci Rep; 2022 Nov; 12(1):20162. PubMed ID: 36424408 [TBL] [Abstract][Full Text] [Related]
5. Rice Husk Silica-Derived Nanomaterials for Battery Applications: A Literature Review. Shen Y J Agric Food Chem; 2017 Feb; 65(5):995-1004. PubMed ID: 28052201 [TBL] [Abstract][Full Text] [Related]
6. Carbonization on combustion and biodegradation of agricultural waste as a possible source of silica. Krishnamoorthy S; Iyer NR; Murthy AR Appl Biochem Biotechnol; 2015 Feb; 175(3):1622-32. PubMed ID: 25413790 [TBL] [Abstract][Full Text] [Related]
7. Recycling of sugarcane bagasse ash waste in the production of clay bricks. Faria KC; Gurgel RF; Holanda JN J Environ Manage; 2012 Jun; 101():7-12. PubMed ID: 22387325 [TBL] [Abstract][Full Text] [Related]
8. Extraction and characterization of polysaccharides from tamarind seeds, rice mill residue, okra waste and sugarcane bagasse for its Bio-thermoplastic properties. Chandra Mohan C; Harini K; Vajiha Aafrin B; Lalitha Priya U; Maria Jenita P; Babuskin S; Karthikeyan S; Sudarshan K; Renuka V; Sukumar M Carbohydr Polym; 2018 Apr; 186():394-401. PubMed ID: 29456002 [TBL] [Abstract][Full Text] [Related]
9. Experimental analysis to utilize the solid wastes in brick production. Varadarajan R; Govindan V J Environ Sci Eng; 2013 Jul; 55(3):343-50. PubMed ID: 25509952 [TBL] [Abstract][Full Text] [Related]
10. Generation of crystalline silica from sugarcane burning. Le Blond JS; Horwell CJ; Williamson BJ; Oppenheimer C J Environ Monit; 2010 Jul; 12(7):1459-70. PubMed ID: 20520870 [TBL] [Abstract][Full Text] [Related]
11. An insight into the green synthesis of SiO Sharma P; Prakash J; Kaushal R Environ Res; 2022 Sep; 212(Pt C):113328. PubMed ID: 35483413 [TBL] [Abstract][Full Text] [Related]
12. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. Licona-Aguilar ÁI; Torres-Huerta AM; Domínguez-Crespo MA; Palma-Ramírez D; Conde-Barajas E; Negrete-Rodríguez MXL; Rodríguez-Salazar AE; García-Zaleta DS Sci Total Environ; 2022 Jul; 831():154883. PubMed ID: 35358521 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and biocompatibility assessment of sugarcane bagasse-derived biogenic silica nanoparticles for biomedical applications. Athinarayanan J; Periasamy VS; Alhazmi M; Alshatwi AA J Biomed Mater Res B Appl Biomater; 2017 Feb; 105(2):340-349. PubMed ID: 26511324 [TBL] [Abstract][Full Text] [Related]
14. Green synthesis of silica and silicon from agricultural residue sugarcane bagasse ash - a mini review. September LA; Kheswa N; Seroka NS; Khotseng L RSC Adv; 2023 Jan; 13(2):1370-1380. PubMed ID: 36686953 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of micro and nanocrystalline cellulose fibers from the walnut shell, corncob and sugarcane bagasse. Harini K; Chandra Mohan C Int J Biol Macromol; 2020 Nov; 163():1375-1383. PubMed ID: 32750484 [TBL] [Abstract][Full Text] [Related]
16. Recovery of nanosized silica and lignin from sugarcane bagasse waste and their engineering in fabrication of composite membrane for water purification. Kauldhar BS; Sooch BS; Rai SK; Kumar V; Yadav SK Environ Sci Pollut Res Int; 2021 Feb; 28(6):7491-7502. PubMed ID: 33034858 [TBL] [Abstract][Full Text] [Related]
17. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber. Mohamed EF; El-Hashemy MA; Abdel-Latif NM; Shetaya WH J Air Waste Manag Assoc; 2015 Dec; 65(12):1413-20. PubMed ID: 26606041 [TBL] [Abstract][Full Text] [Related]
18. Utilization of agricultural and industrial waste as replacement of cement in pavement quality concrete: a review. Pandey A; Kumar B Environ Sci Pollut Res Int; 2022 Apr; 29(17):24504-24546. PubMed ID: 35064477 [TBL] [Abstract][Full Text] [Related]
19. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica. Bansal V; Ahmad A; Sastry M J Am Chem Soc; 2006 Nov; 128(43):14059-66. PubMed ID: 17061888 [TBL] [Abstract][Full Text] [Related]
20. Simplified Synthesis of Biomass-Derived Si/C Composites as Stable Anode Materials for Lithium-Ion Batteries. Majeed MK; Saleem A; Wang C; Song C; Yang J Chemistry; 2020 Aug; 26(46):10544-10549. PubMed ID: 32453469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]