These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37105477)
21. Plant assays and avoidance tests with collembola and earthworms demonstrate rehabilitation success in bauxite residue. Finngean G; O'Grady A; Courtney R Environ Sci Pollut Res Int; 2018 Jan; 25(3):2157-2166. PubMed ID: 29116530 [TBL] [Abstract][Full Text] [Related]
22. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Huang L; Baumgartl T; Mulligan D Ann Bot; 2012 Jul; 110(2):223-38. PubMed ID: 22648878 [TBL] [Abstract][Full Text] [Related]
23. Amelioration of the physicochemical properties enhanced the resilience of bacteria in bauxite residues. Dou Z; Sun Y; Zhang Y; Wang M; Zhang N; Liu A; Hu X J Hazard Mater; 2024 Jun; 471():134455. PubMed ID: 38691931 [TBL] [Abstract][Full Text] [Related]
24. Novel predictors of soil genesis following natural weathering processes of bauxite residues. Zhu F; Xue S; Hartley W; Huang L; Wu C; Li X Environ Sci Pollut Res Int; 2016 Feb; 23(3):2856-63. PubMed ID: 26452661 [TBL] [Abstract][Full Text] [Related]
25. Microbially-driven strategies for bioremediation of bauxite residue. Santini TC; Kerr JL; Warren LA J Hazard Mater; 2015 Aug; 293():131-57. PubMed ID: 25867516 [TBL] [Abstract][Full Text] [Related]
26. Neutralization and Improvement of Bauxite Residue by Saline-Alkali Tolerant Bacteria. Lv L; Qiu K; Ge S; Jiao Z; Gao C; Fu H; Su R; Liu Z; Wang Y; Wang Y Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141868 [TBL] [Abstract][Full Text] [Related]
27. Variations in Soil Microbial Biomass Carbon and Soil Dissolved Organic Carbon in the Re-Vegetation of Hilly Slopes with Purple Soil. Yang N; Zou D; Yang M; Lin Z PLoS One; 2016; 11(12):e0166536. PubMed ID: 27977678 [TBL] [Abstract][Full Text] [Related]
28. Rapid conversion of alkaline bauxite residue through co-pyrolysis with waste biomass and its revegetation potential. Wu Y; Zhang Y; Li Q; Jiang J; Jiang Y; Xue S J Environ Sci (China); 2023 May; 127():102-113. PubMed ID: 36522045 [TBL] [Abstract][Full Text] [Related]
29. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition. Xue S; Ye Y; Zhu F; Wang Q; Jiang J; Hartley W J Environ Sci (China); 2019 Apr; 78():276-286. PubMed ID: 30665646 [TBL] [Abstract][Full Text] [Related]
30. Root-associated microbiomes of wheat under the combined effect of plant development and nitrogen fertilization. Chen S; Waghmode TR; Sun R; Kuramae EE; Hu C; Liu B Microbiome; 2019 Oct; 7(1):136. PubMed ID: 31640813 [TBL] [Abstract][Full Text] [Related]
31. Long-term weathering difference in soil-like indicators of bauxite residue mediates the multifunctionality driven by microbial communities. Jiang Y; Huang S; Zhu F; Guo X; Zhang X; Zhu M; Zhang Y; Xue S Sci Total Environ; 2023 Sep; 890():164377. PubMed ID: 37230357 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of nitrogen on core taxa recruitment by Penicillium oxalicum stimulated microbially-driven soil formation in bauxite residue. Jiang Y; Zhang Z; Jiang J; Zhu F; Guo X; Jia P; Li H; Liu Z; Huang S; Zhang Y; Xue S J Hazard Mater; 2024 Jul; 473():134647. PubMed ID: 38762986 [TBL] [Abstract][Full Text] [Related]
33. Revegetation strategies for bauxite refinery residue: a case study of Alcan Gove in Northern Territory, Australia. Wehr JB; Fulton I; Menzies NW Environ Manage; 2006 Mar; 37(3):297-306. PubMed ID: 16456629 [TBL] [Abstract][Full Text] [Related]
34. Influence of organic waste and residue mud additions on chemical, physical and microbial properties of bauxite residue sand. Jones BE; Haynes RJ; Phillips IR Environ Sci Pollut Res Int; 2011 Feb; 18(2):199-211. PubMed ID: 20589440 [TBL] [Abstract][Full Text] [Related]
35. Comparison of network connectivity and environmental driving factors of root-associated fungal communities of desert ephemeral plants in two habitat soils. Peng M; He H; Wang X; Wang Z; Zhuang L J Environ Manage; 2023 Apr; 332():117375. PubMed ID: 36716547 [TBL] [Abstract][Full Text] [Related]
36. Effects of increasing concentrations of unamended and gypsum modified bauxite residues on soil microbial community functions and structure - A mesocosm study. Fourrier C; Luglia M; Hennebert P; Foulon J; Ambrosi JP; Angeletti B; Keller C; Criquet S Ecotoxicol Environ Saf; 2020 Sep; 201():110847. PubMed ID: 32554203 [TBL] [Abstract][Full Text] [Related]
37. Long-term conservation tillage increase cotton rhizosphere sequestration of soil organic carbon by changing specific microbial CO Su X; Zhang L; Meng H; Wang H; Zhao J; Sun X; Song X; Zhang X; Mao L J Environ Manage; 2024 May; 358():120743. PubMed ID: 38626484 [TBL] [Abstract][Full Text] [Related]
38. Organo-mineral complexes alter bacterial composition and induce carbon and nitrogen cycling in the rhizosphere. Zheng X; Oba BT; Wang H; Shen C; Zhao R; Zhao D; Ding H Sci Total Environ; 2022 Aug; 836():155671. PubMed ID: 35525342 [TBL] [Abstract][Full Text] [Related]
39. Enriched rhizospheric functional microbiome may enhance adaptability of Xing W; Gai X; Xue L; Li S; Zhang X; Ju F; Chen G Front Microbiol; 2024; 15():1348054. PubMed ID: 38577689 [TBL] [Abstract][Full Text] [Related]
40. Rhizosphere engineering for soil carbon sequestration. Wang C; Kuzyakov Y Trends Plant Sci; 2024 Apr; 29(4):447-468. PubMed ID: 37867041 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]