These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 37105477)
41. Utilization of carbon sources in the rice rhizosphere and nonrhizosphere soils with different long-term fertilization management. Tang H; Xiao X; Xu Y; Li C; Cheng K; Pan X; Li W J Basic Microbiol; 2019 Jun; 59(6):621-631. PubMed ID: 30980731 [TBL] [Abstract][Full Text] [Related]
42. Ecological evolution during the three-year restoration using rhizosphere soil cover method at a Lead-Zinc tailing pond in Karst areas. Jiang X; Guo Y; Li H; Li X; Liu J Sci Total Environ; 2022 Dec; 853():158291. PubMed ID: 36030848 [TBL] [Abstract][Full Text] [Related]
43. Microbially-driven alkaline regulation: Organic acid secretion behavior of Penicillium oxalicum and charge neutralization in bauxite residue. Zhang Y; Gao H; Zhao D; Chen X; Zhu F; Li Y; Xue S Environ Res; 2024 Jan; 240(Pt 1):117489. PubMed ID: 37890830 [TBL] [Abstract][Full Text] [Related]
44. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. Macías-Pérez LA; Levard C; Barakat M; Angeletti B; Borschneck D; Poizat L; Achouak W; Auffan M J Hazard Mater; 2022 Feb; 424(Pt B):127470. PubMed ID: 34687997 [TBL] [Abstract][Full Text] [Related]
45. Phosphogypsum stabilization of bauxite residue: Conversion of its alkaline characteristics. Xue S; Li M; Jiang J; Millar GJ; Li C; Kong X J Environ Sci (China); 2019 Mar; 77():1-10. PubMed ID: 30573073 [TBL] [Abstract][Full Text] [Related]
46. Global magnitude of rhizosphere effects on soil microbial communities and carbon cycling in natural terrestrial ecosystems. Lv C; Wang C; Cai A; Zhou Z Sci Total Environ; 2023 Jan; 856(Pt 1):158961. PubMed ID: 36155049 [TBL] [Abstract][Full Text] [Related]
47. Rhizosphere enzyme activities and microorganisms drive the transformation of organic and inorganic carbon in saline-alkali soil region. Qu Y; Tang J; Liu B; Lyu H; Duan Y; Yang Y; Wang S; Li Z Sci Rep; 2022 Jan; 12(1):1314. PubMed ID: 35079055 [TBL] [Abstract][Full Text] [Related]
48. [Effects of Vegetation Restoration on the Structure and Function of the Rhizosphere Soil Bacterial Community of Zhang RH; Song Z; Fu WD; Yun LL; Gao JH; Wang R; Wang ZH; Zhang GL Huan Jing Ke Xue; 2021 Jan; 42(1):433-442. PubMed ID: 33372496 [TBL] [Abstract][Full Text] [Related]
49. Long term field trials demonstrate sustainable nutrient supply and uptake in rehabilitated bauxite residue. Phillips IR; Courtney R Sci Total Environ; 2022 Jan; 804():150134. PubMed ID: 34509849 [TBL] [Abstract][Full Text] [Related]
50. Migration of Alkaline Constituents and Restoration Evaluation in Bauxite Residue Disposal Areas. Li Y; Li Q; Sun W; Peng Z; Millar GJ; Xue S; Jiang J Bull Environ Contam Toxicol; 2022 Jul; 109(1):20-29. PubMed ID: 35088100 [TBL] [Abstract][Full Text] [Related]
51. Proposal for management and alkalinity transformation of bauxite residue in China. Xue S; Kong X; Zhu F; Hartley W; Li X; Li Y Environ Sci Pollut Res Int; 2016 Jul; 23(13):12822-34. PubMed ID: 27023808 [TBL] [Abstract][Full Text] [Related]
52. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Sokol NW; Sanderman J; Bradford MA Glob Chang Biol; 2019 Jan; 25(1):12-24. PubMed ID: 30338884 [TBL] [Abstract][Full Text] [Related]
53. Effects of binding materials on microaggregate size distribution in bauxite residues. Zhu F; Huang N; Xue S; Hartley W; Li Y; Zou Q Environ Sci Pollut Res Int; 2016 Dec; 23(23):23867-23875. PubMed ID: 27628703 [TBL] [Abstract][Full Text] [Related]
54. Combined effects of clay immobilized Azospirillum brasilense and Pantoea dispersa and organic olive residue on plant performance and soil properties in the revegetation of a semiarid area. Schoebitz M; Mengual C; Roldán A Sci Total Environ; 2014 Jan; 466-467():67-73. PubMed ID: 23895777 [TBL] [Abstract][Full Text] [Related]
56. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China. Sun X; Zhou Y; Tan Y; Wu Z; Lu P; Zhang G; Yu F Environ Sci Pollut Res Int; 2018 Aug; 25(22):22106-22119. PubMed ID: 29802615 [TBL] [Abstract][Full Text] [Related]
57. An Investigation into the Growth of Lolium perenne L. and Soil Properties Following Soil Amendment with Phosphorus-Saturated Bauxite Residue. Cusack PB; Healy MG; Callery O; Di Carlo E; Ujaczki É; Courtney R Bull Environ Contam Toxicol; 2022 Jul; 109(1):13-19. PubMed ID: 35389079 [TBL] [Abstract][Full Text] [Related]
58. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. See CR; Keller AB; Hobbie SE; Kennedy PG; Weber PK; Pett-Ridge J Glob Chang Biol; 2022 Apr; 28(8):2527-2540. PubMed ID: 34989058 [TBL] [Abstract][Full Text] [Related]
59. Effects of Agricultural Management on Rhizosphere Microbial Structure and Function in Processing Tomato Plants. Schmidt JE; Vannette RL; Igwe A; Blundell R; Casteel CL; Gaudin ACM Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175190 [TBL] [Abstract][Full Text] [Related]
60. Coupling microbial and abiotic amendments accelerates in situ remediation of bauxite residue at field scale. Scullett-Dean G; Stockwell K; Myers L; Nyeboer H; Moreira-Grez B; Santini TC Sci Total Environ; 2023 Jun; 877():162699. PubMed ID: 36921848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]