These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37105489)

  • 21. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Will fluctuations in salt marsh-mangrove dominance alter vulnerability of a subtropical wetland to sea-level rise?
    McKee KL; Vervaeke WC
    Glob Chang Biol; 2018 Mar; 24(3):1224-1238. PubMed ID: 29044820
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A keystone mutualism underpins resilience of a coastal ecosystem to drought.
    Angelini C; Griffin JN; van de Koppel J; Lamers LPM; Smolders AJP; Derksen-Hooijberg M; van der Heide T; Silliman BR
    Nat Commun; 2016 Aug; 7():12473. PubMed ID: 27534803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England.
    Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB
    Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological and ecological determinants of body temperature of Geukensia demissa, the Atlantic ribbed mussel, and their effects on mussel mortality.
    Jost J; Helmuth B
    Biol Bull; 2007 Oct; 213(2):141-51. PubMed ID: 17928521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing the wildlife habitat value of New England salt marshes: I. Model and application.
    McKinney RA; Charpentier MA; Wigand C
    Environ Monit Assess; 2009 Jul; 154(1-4):29-40. PubMed ID: 18592388
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions.
    Hensel MJS; Silliman BR; van de Koppel J; Hensel E; Sharp SJ; Crotty SM; Byrnes JEK
    Nat Commun; 2021 Nov; 12(1):6290. PubMed ID: 34725328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise.
    Donnelly JP; Bertness MD
    Proc Natl Acad Sci U S A; 2001 Dec; 98(25):14218-23. PubMed ID: 11724926
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Salt marsh vegetation change during a half-century of experimental nutrient addition and climate-driven controls in Great Sippewissett Marsh.
    Valiela I; Chenoweth K; Lloret J; Teal J; Howes B; Goehringer Toner D
    Sci Total Environ; 2023 Apr; 867():161546. PubMed ID: 36634783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reciprocal facilitation between ants and small mammals in tidal marshes.
    Canepuccia AD; Hidalgo FJ; Fanjul E; Iribarne OO
    Oecologia; 2024 Mar; 204(3):575-588. PubMed ID: 38376632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of hydraulic restoration of San Pablo Marsh, California.
    Grismer ME; Kollar J; Syder J
    Environ Monit Assess; 2004 Nov; 98(1-3):69-92. PubMed ID: 15473530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.
    Yuan J; Ding W; Liu D; Kang H; Freeman C; Xiang J; Lin Y
    Glob Chang Biol; 2015 Apr; 21(4):1567-80. PubMed ID: 25367159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability.
    Watson EB; Rahman FI; Woolfolk A; Meyer R; Maher N; Wigand C; Gray AB
    PLoS One; 2022; 17(9):e0273260. PubMed ID: 36084085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing long-term outcomes of tidal restoration in New England salt marshes.
    Kutcher TE; Raposa KB
    J Environ Manage; 2023 Jul; 338():117832. PubMed ID: 37023604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The protective role of coastal marshes: a systematic review and meta-analysis.
    Shepard CC; Crain CM; Beck MW
    PLoS One; 2011; 6(11):e27374. PubMed ID: 22132099
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.
    Brandt-Williams S; Wigand C; Campbell DE
    Environ Monit Assess; 2013 Feb; 185(2):1391-412. PubMed ID: 22535367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant biomass and rates of carbon dioxide uptake are enhanced by successful restoration of tidal connectivity in salt marshes.
    Wang F; Eagle M; Kroeger KD; Spivak AC; Tang J
    Sci Total Environ; 2021 Jan; 750():141566. PubMed ID: 32882493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs.
    Peterson BJ; Howarth RW; Garritt RH
    Science; 1985 Mar; 227(4692):1361-3. PubMed ID: 17793771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Salt marsh monitoring along the mid-Atlantic coast by Google Earth Engine enabled time series.
    Campbell AD; Wang Y
    PLoS One; 2020; 15(2):e0229605. PubMed ID: 32109951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pattern and scale: evaluating generalities in crab distributions and marsh dynamics from small plots to a national scale.
    Wasson K; Raposa K; Almeida M; Beheshti K; Crooks JA; Deck A; Dix N; Garvey C; Goldstein J; Johnson DS; Lerberg S; Marcum P; Peter C; Puckett B; Schmitt J; Smith E; Laurent KS; Swanson K; Tyrrell M; Guy R
    Ecology; 2019 Oct; 100(10):e02813. PubMed ID: 31291466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.