These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37105714)

  • 1. Promoter-independent synthesis of chemically modified RNA by human DNA polymerase θ variants.
    Tredinnick T; Kent T; Minakhin L; Li Z; Madzo J; Chen XS; Pomerantz RT
    RNA; 2023 Aug; 29(8):1288-1300. PubMed ID: 37105714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitution of ribonucleotides in the T7 RNA polymerase promoter element.
    McGinness KE; Joyce GF
    J Biol Chem; 2002 Jan; 277(4):2987-91. PubMed ID: 11704669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step enzymatic modification of RNA 3' termini using polymerase θ.
    Thomas C; Rusanov T; Hoang T; Augustin T; Kent T; Gaspar I; Pomerantz RT
    Nucleic Acids Res; 2019 Apr; 47(7):3272-3283. PubMed ID: 30818397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic incorporation of emissive pyrimidine ribonucleotides.
    Srivatsan SG; Tor Y
    Chem Asian J; 2009 Mar; 4(3):419-27. PubMed ID: 19072942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abortive products as initiating nucleotides during transcription by T7 RNA polymerase.
    Moroney SE; Piccirilli JA
    Biochemistry; 1991 Oct; 30(42):10343-9. PubMed ID: 1718417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directed evolution of DNA polymerase, RNA polymerase and reverse transcriptase activity in a single polypeptide.
    Ong JL; Loakes D; Jaroslawski S; Too K; Holliger P
    J Mol Biol; 2006 Aug; 361(3):537-50. PubMed ID: 16859707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traceless enzymatic synthesis of monodispersed hypermodified oligodeoxyribonucleotide polymers from RNA templates.
    Ondruš M; Sýkorová V; Hocek M
    Chem Commun (Camb); 2022 Oct; 58(80):11248-11251. PubMed ID: 36124894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient inhibition of RNA self-primed extension by addition of competing 3'-capture DNA-improved RNA synthesis by T7 RNA polymerase.
    Gholamalipour Y; Johnson WC; Martin CT
    Nucleic Acids Res; 2019 Nov; 47(19):e118. PubMed ID: 31392994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2',3'-Protected Nucleotides as Building Blocks for Enzymatic de novo RNA Synthesis.
    Pichon M; Levi-Acobas F; Kitoun C; Hollenstein M
    Chemistry; 2024 Apr; 30(24):e202400137. PubMed ID: 38403849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA polymerase θ specializes in incorporating synthetic expanded-size (xDNA) nucleotides.
    Kent T; Rusanov TD; Hoang TM; Velema WA; Krueger AT; Copeland WC; Kool ET; Pomerantz RT
    Nucleic Acids Res; 2016 Nov; 44(19):9381-9392. PubMed ID: 27591252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair.
    Chandramouly G; Zhao J; McDevitt S; Rusanov T; Hoang T; Borisonnik N; Treddinick T; Lopezcolorado FW; Kent T; Siddique LA; Mallon J; Huhn J; Shoda Z; Kashkina E; Brambati A; Stark JM; Chen XS; Pomerantz RT
    Sci Adv; 2021 Jun; 7(24):. PubMed ID: 34117057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly accurate synthesis of the fully 2'-fluoro-modified oligonucleotide by Therminator DNA polymerases.
    Kasuya T; Hori S; Hiramatsu H; Yanagimoto T
    Bioorg Med Chem Lett; 2014 May; 24(9):2134-6. PubMed ID: 24703229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple
    Lu G; Bluemling GR; Mao S; Hager M; Gurale BP; Collop P; Kuiper D; Sana K; Painter GR; De La Rosa A; Kolykhalov AA
    Antimicrob Agents Chemother; 2018 Feb; 62(2):. PubMed ID: 29180528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled enzymatic synthesis of oligonucleotides.
    Pichon M; Hollenstein M
    Commun Chem; 2024 Jun; 7(1):138. PubMed ID: 38890393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase theta is a synthetic lethal target for killing Epstein-Barr virus lymphomas.
    Willman GH; Xu H; Zeigler TM; McIntosh MT; Bhaduri-McIntosh S
    J Virol; 2024 Jul; 98(7):e0057224. PubMed ID: 38860782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution.
    Padmanabhan R; Sarcar SN; Miller DL
    J Mol Evol; 2020 Mar; 88(2):179-193. PubMed ID: 31863129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of ribonucleoside 5'-(alpha-P-borano)triphosphates into a 20-mer RNA by T7 RNA polymerase.
    Wan J; Shaw BR
    Nucleosides Nucleotides Nucleic Acids; 2005; 24(5-7):943-6. PubMed ID: 16248068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple approach to improving RNA synthesis: Salt inhibition of RNA rebinding coupled with strengthening promoter binding by a targeted gap in the DNA.
    Malagoda Pathiranage K; Martin CT
    Methods Enzymol; 2023; 691():209-222. PubMed ID: 37914447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Template-Independent Enzymatic RNA Synthesis.
    Karalkar NB; Kent T; Tredinnick T; Betancurt-Anzola L; Delarue M; Pomerantz R; Benner SA
    bioRxiv; 2024 Oct; ():. PubMed ID: 39416189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variety of Nucleotide Polymerase Mutants Aiming to Synthesize Modified RNA.
    Ohashi S; Hashiya F; Abe H
    Chembiochem; 2021 Jul; 22(14):2398-2406. PubMed ID: 33822453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.