These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 37105720)
1. FreiBox: A Versatile Open-Source Behavioral Setup for Investigating the Neuronal Correlates of Behavioral Flexibility via 1-Photon Imaging in Freely Moving Mice. De La Crompe B; Schneck M; Steenbergen F; Schneider A; Diester I eNeuro; 2023 Apr; 10(4):. PubMed ID: 37105720 [TBL] [Abstract][Full Text] [Related]
2. Custom-Built Operant Conditioning Setup for Calcium Imaging and Cognitive Testing in Freely Moving Mice. Vassilev P; Fonseca E; Hernandez G; Pantoja-Urban AH; Giroux M; Nouel D; Van Leer E; Flores C eNeuro; 2022; 9(1):. PubMed ID: 35105659 [TBL] [Abstract][Full Text] [Related]
8. Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals. Srinivasan S; Hosokawa T; Vergara P; Chérasse Y; Naoi T; Sakurai T; Sakaguchi M Biochem Biophys Res Commun; 2019 Sep; 517(3):520-524. PubMed ID: 31376934 [TBL] [Abstract][Full Text] [Related]
9. Stereotaxic Viral Injection and Gradient-Index Lens Implantation for Deep Brain In Vivo Calcium Imaging. Thapa R; Liang B; Liu R; Li Y J Vis Exp; 2021 Oct; (176):. PubMed ID: 34694282 [TBL] [Abstract][Full Text] [Related]
10. The McGill-Mouse-Miniscope platform: A standardized approach for high-throughput imaging of neuronal dynamics during behavior. Mosser CA; Haqqee Z; Nieto-Posadas A; Murai KK; Stifani S; Williams S; Brandon MP Genes Brain Behav; 2021 Jan; 20(1):e12686. PubMed ID: 32691490 [TBL] [Abstract][Full Text] [Related]
11. High-throughput low-cost digital lickometer system for the assessment of licking behaviours in mice. Monfared MS; Mascret Q; Marroquin-Rivera A; Blanc-Árabe L; Lebouleux Q; Lévesque J; Gosselin B; Labonté B J Neurosci Methods; 2024 Oct; 410():110221. PubMed ID: 39053773 [TBL] [Abstract][Full Text] [Related]
12. Automated test of behavioral flexibility in mice using a behavioral sequencing task in IntelliCage. Endo T; Maekawa F; Võikar V; Haijima A; Uemura Y; Zhang Y; Miyazaki W; Suyama S; Shimazaki K; Wolfer DP; Yada T; Tohyama C; Lipp HP; Kakeyama M Behav Brain Res; 2011 Aug; 221(1):172-81. PubMed ID: 21377499 [TBL] [Abstract][Full Text] [Related]
13. INGEsT: An Open-Source Behavioral Setup for Studying Self-motivated Ingestive Behavior and Learned Operant Behavior. Zhao Z; Xu B; Loomis CL; Anthony SA; McKie I; Srigiriraju A; Bolton M; Stern SA bioRxiv; 2024 Mar; ():. PubMed ID: 38558985 [TBL] [Abstract][Full Text] [Related]
14. Predictors of individual variation in reversal learning performance in three-spined sticklebacks. Bensky MK; Bell AM Anim Cogn; 2020 Sep; 23(5):925-938. PubMed ID: 32514661 [TBL] [Abstract][Full Text] [Related]
15. Medium spiny neurons of the anterior dorsomedial striatum mediate reversal learning in a cell-type-dependent manner. Wang X; Qiao Y; Dai Z; Sui N; Shen F; Zhang J; Liang J Brain Struct Funct; 2019 Jan; 224(1):419-434. PubMed ID: 30367246 [TBL] [Abstract][Full Text] [Related]
16. Visiomode: An open-source platform for building rodent touchscreen-based behavioral assays. Eleftheriou C; Clarke T; Poon V; Zechner M; Duguid I J Neurosci Methods; 2023 Feb; 386():109779. PubMed ID: 36621552 [TBL] [Abstract][Full Text] [Related]
17. More rapid reversal learning following overtraining in the rat is evidence that behavioural and cognitive flexibility are dissociable. Dhawan SS; Tait DS; Brown VJ Behav Brain Res; 2019 May; 363():45-52. PubMed ID: 30710612 [TBL] [Abstract][Full Text] [Related]
18. A Teensy microcontroller-based interface for optical imaging camera control during behavioral experiments. Romano M; Bucklin M; Gritton H; Mehrotra D; Kessel R; Han X J Neurosci Methods; 2019 May; 320():107-115. PubMed ID: 30946877 [TBL] [Abstract][Full Text] [Related]