These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 37105762)
1. Immobilizing Quinone-Fused Aza-Phenazine into π-d Conjugated Coordination Polymers with Multiple-Active Sites for Sodium-Ion Batteries. Cheng L; Yu J; Chen L; Chu J; Wang J; Wang HG; Feng D; Cui F; Zhu G Small; 2023 Aug; 19(35):e2301578. PubMed ID: 37105762 [TBL] [Abstract][Full Text] [Related]
2. Successive Storage of Cations and Anions by Ligands of π-d-Conjugated Coordination Polymers Enabling Robust Sodium-Ion Batteries. Chen Y; Zhu Q; Fan K; Gu Y; Sun M; Li Z; Zhang C; Wu Y; Wang Q; Xu S; Ma J; Wang C; Hu W Angew Chem Int Ed Engl; 2021 Aug; 60(34):18769-18776. PubMed ID: 34137139 [TBL] [Abstract][Full Text] [Related]
3. Framework Dimensional Control Boosting Charge Storage in Conjugated Coordination Polymers. Fan K; Fu C; Chen Y; Zhang C; Zhang G; Guan L; Mao M; Ma J; Hu W; Wang C Adv Sci (Weinh); 2023 Feb; 10(5):e2205760. PubMed ID: 36494093 [TBL] [Abstract][Full Text] [Related]
4. 3D π-d Conjugated Coordination Polymer Enabling Ultralong Life Magnesium-Ion Storage. Feng S; Zhang M; Ma Y; Ding X; Yan T; Wu Y; Huang W; Zhang L; Ye H; Ji Y; Li Y; Li Y Adv Mater; 2023 Dec; 35(52):e2307736. PubMed ID: 37909806 [TBL] [Abstract][Full Text] [Related]
5. Synergetic Coupling of Redox-Active Sites on Organic Electrode Material for Robust and High-Performance Sodium-Ion Storage. Yang P; Wu Z; Wang S; Li M; Chen H; Qian S; Zheng M; Wang Y; Li S; Qiu J; Zhang S Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202311460. PubMed ID: 37707882 [TBL] [Abstract][Full Text] [Related]
6. Nine-Electron Transfer of Binder Synergistic π-d Conjugated Coordination Polymers as High-Performance Lithium Storage Materials. Wu Y; Shen J; Sun Z; Yang Y; Li F; Ji S; Zhu M; Liu J Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202215864. PubMed ID: 36454222 [TBL] [Abstract][Full Text] [Related]
7. Exceptional Sodium-Ion Storage by an Aza-Covalent Organic Framework for High Energy and Power Density Sodium-Ion Batteries. Shehab MK; Weeraratne KS; Huang T; Lao KU; El-Kaderi HM ACS Appl Mater Interfaces; 2021 Apr; 13(13):15083-15091. PubMed ID: 33749255 [TBL] [Abstract][Full Text] [Related]
8. A Quinone-Based Cathode Material for High-Performance Organic Lithium and Sodium Batteries. Wilkinson D; Bhosale M; Amores M; Naresh G; Cussen SA; Cooke G ACS Appl Energy Mater; 2021 Nov; 4(11):12084-12090. PubMed ID: 34841204 [TBL] [Abstract][Full Text] [Related]
9. Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox-Active Sites for High-Performance Aluminium Organic Batteries. Peng X; Xie Y; Baktash A; Tang J; Lin T; Huang X; Hu Y; Jia Z; Searles DJ; Yamauchi Y; Wang L; Luo B Angew Chem Int Ed Engl; 2022 Jun; 61(25):e202203646. PubMed ID: 35332641 [TBL] [Abstract][Full Text] [Related]
10. One-Dimensional π-d Conjugated Conductive Metal-Organic Framework with Dual Redox-Active Sites for High-Capacity and Durable Cathodes for Aqueous Zinc Batteries. Sang Z; Liu J; Zhang X; Yin L; Hou F; Liang J ACS Nano; 2023 Feb; 17(3):3077-3087. PubMed ID: 36688450 [TBL] [Abstract][Full Text] [Related]
11. Organometallic Polymer Constructed by Active Fe-C Wang LY; Ma C; Yang JN; Wang KX; Chen JS Angew Chem Int Ed Engl; 2024 Aug; ():e202413452. PubMed ID: 39155243 [TBL] [Abstract][Full Text] [Related]
12. Effect of Synthesis Temperature on Performance of Phenazine-Based Cathode for Sodium Dual-Ion Batteries. Wang X; Li J; Liu Y; Li D; Ma M; Xie Y; You W; Zheng A; Xiong L ChemSusChem; 2024 Sep; ():e202401841. PubMed ID: 39317988 [TBL] [Abstract][Full Text] [Related]
13. A Small-Molecule Organic Cathode with Extended Conjugation toward Enhancing Na Yao Y; Pei M; Su C; Jin X; Qu Y; Song Z; Jiang W; Jian X; Hu F Small; 2024 Aug; 20(34):e2401481. PubMed ID: 38616774 [TBL] [Abstract][Full Text] [Related]
14. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life. Li S; Shang J; Li M; Xu M; Zeng F; Yin H; Tang Y; Han C; Cheng HM Adv Mater; 2023 Dec; 35(50):e2207115. PubMed ID: 36177698 [TBL] [Abstract][Full Text] [Related]
15. Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Li K; Wang Y; Gao B; Lv X; Si Z; Wang HG J Colloid Interface Sci; 2021 Nov; 601():446-453. PubMed ID: 34087601 [TBL] [Abstract][Full Text] [Related]
16. Small-molecule organic electrode materials on carbon-coated aluminum foil for high-performance sodium-ion batteries. Zou J; Ji L; Xu T; Gou Q; Fang S; Xue P; Tang M; Wang C; Wang Z J Colloid Interface Sci; 2024 Dec; 676():715-725. PubMed ID: 39059278 [TBL] [Abstract][Full Text] [Related]
17. Designing High Performance Organic Batteries. Chen Y; Wang C Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710 [TBL] [Abstract][Full Text] [Related]
18. Reversible Redox Chemistry of Azo Compounds for Sodium-Ion Batteries. Luo C; Xu GL; Ji X; Hou S; Chen L; Wang F; Jiang J; Chen Z; Ren Y; Amine K; Wang C Angew Chem Int Ed Engl; 2018 Mar; 57(11):2879-2883. PubMed ID: 29378088 [TBL] [Abstract][Full Text] [Related]
20. Conjugation and Topology Engineering of 2D π-d Conjugated Metal-Organic Frameworks for Robust Potassium Organic Batteries. Cheng L; Qi M; Yu J; Zhang X; Wang HG; Cui F; Wang Y Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202405239. PubMed ID: 38634305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]