These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 37105768)
1. Next-generation -omics approaches to drive carboxylate production by acidogenic fermentation of food waste: a review. Kumar R; Kumar R; Brar SK; Kaur G Bioengineered; 2022; 13(7-12):14987-15002. PubMed ID: 37105768 [TBL] [Abstract][Full Text] [Related]
2. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
3. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics. Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431 [TBL] [Abstract][Full Text] [Related]
4. Volatile fatty acid production in anaerobic fermentation of food waste saccharified residue: Effect of substrate concentration. Wang Q; Zhang G; Chen L; Yang N; Wu Y; Fang W; Zhang R; Wang X; Fu C; Zhang P Waste Manag; 2023 Jun; 164():29-36. PubMed ID: 37023642 [TBL] [Abstract][Full Text] [Related]
5. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids. Zhang L; Tsui TH; Loh KC; Dai Y; Tong YW Bioresour Technol; 2021 Oct; 337():125481. PubMed ID: 34320761 [TBL] [Abstract][Full Text] [Related]
6. Changes in volatile fatty acid production and microbiome during fermentation of food waste from hospitality sector. Rasi S; Vainio M; Blasco L; Kahala M; Leskinen H; Tampio E J Environ Manage; 2022 Apr; 308():114640. PubMed ID: 35124316 [TBL] [Abstract][Full Text] [Related]
7. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
8. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258 [TBL] [Abstract][Full Text] [Related]
9. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. He X; Yin J; Liu J; Chen T; Shen D Bioresour Technol; 2019 Jan; 271():244-250. PubMed ID: 30273828 [TBL] [Abstract][Full Text] [Related]
11. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Dahiya S; Sarkar O; Swamy YV; Venkata Mohan S Bioresour Technol; 2015 Apr; 182():103-113. PubMed ID: 25682230 [TBL] [Abstract][Full Text] [Related]
12. Continuous waste activated sludge and food waste co-fermentation for synchronously recovering vivianite and volatile fatty acids at different sludge retention times: Performance and microbial response. Wu Y; Cao J; Zhang Q; Xu R; Fang F; Feng Q; Li C; Xue Z; Luo J Bioresour Technol; 2020 Oct; 313():123610. PubMed ID: 32504871 [TBL] [Abstract][Full Text] [Related]
13. Production of polyhydroxyalkanoates (PHAs) by Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical pretreatment enhancing co-fermentation of waste activated sludge and food waste into volatile fatty acids: Performance, microbial community dynamics and metabolism. Lin Q; Dong X; Luo J; Zeng Q; Ma J; Wang Z; Chen G; Guo G Bioresour Technol; 2022 Oct; 361():127736. PubMed ID: 35932947 [TBL] [Abstract][Full Text] [Related]
15. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Vidal-Antich C; Peces M; Perez-Esteban N; Mata-Alvarez J; Dosta J; Astals S Sci Total Environ; 2022 Nov; 849():157920. PubMed ID: 35952870 [TBL] [Abstract][Full Text] [Related]
16. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Zhou M; Yan B; Wong JWC; Zhang Y Bioresour Technol; 2018 Jan; 248(Pt A):68-78. PubMed ID: 28693950 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of acidogenic fermentation for volatile fatty acid production from food waste: Effect of redox potential and inoculum. Yin J; Yu X; Zhang Y; Shen D; Wang M; Long Y; Chen T Bioresour Technol; 2016 Sep; 216():996-1003. PubMed ID: 27343452 [TBL] [Abstract][Full Text] [Related]
18. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Varghese VK; Poddar BJ; Shah MP; Purohit HJ; Khardenavis AA Sci Total Environ; 2022 Apr; 815():152500. PubMed ID: 34968606 [TBL] [Abstract][Full Text] [Related]
20. Enhancing propionic acid production in the acidogenic fermentation of food waste facilitated by a fungal mash under neutral pH. Zhang M; Zhang D; Du J; Zhou B; Wang D; Liu X; Yan C; Liang J; Zhou L J Environ Manage; 2023 Feb; 327():116901. PubMed ID: 36481690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]