BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37106623)

  • 1. Neuromechanics-Based Neural Feedback Controller for Planar Arm Reaching Movements.
    Zhao Y; Zhang M; Wu H; He X; Todoh M
    Bioengineering (Basel); 2023 Mar; 10(4):. PubMed ID: 37106623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biologically inspired neural network controller for ballistic arm movements.
    Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T
    J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for learning human reaching movements.
    Karniel A; Inbar GF
    Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
    Blana D; Kirsch RF; Chadwick EK
    Med Biol Eng Comput; 2009 May; 47(5):533-42. PubMed ID: 19343388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Simulation of Reaching Moving Targets Using Nonlinear Model Predictive Control.
    Mehrabi N; Sharif Razavian R; Ghannadi B; McPhee J
    Front Comput Neurosci; 2016; 10():143. PubMed ID: 28133449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Optimal Adaptive-Based Neurofuzzy Control of the 3-DOF Musculoskeletal System of Human Arm in a 2D Plane.
    Valizadeh A; Akbari AA
    Appl Bionics Biomech; 2021; 2021():5514693. PubMed ID: 33880132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization and evaluation of a proportional derivative controller for planar arm movement.
    Jagodnik KM; van den Bogert AJ
    J Biomech; 2010 Apr; 43(6):1086-91. PubMed ID: 20097345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Force Response.
    Stollenmaier K; Ilg W; Haeufle DFB
    Front Bioeng Biotechnol; 2020; 8():308. PubMed ID: 32373601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency sensitive motion control for a single joint arm model.
    Park H; Durand DM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5416-9. PubMed ID: 17947141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
    Jagodnik KM; Thomas PS; van den Bogert AJ; Branicky MS; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1892-1905. PubMed ID: 28475063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic NMES controller for arm movements supported by a passive exoskeleton.
    Ferrante S; Ambrosini E; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1888-91. PubMed ID: 23366282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of an optimal control model of multi-joint arm movements.
    Lan N
    Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efferent Feedback in a Spinal-Like Controller: Reaching With Perturbations.
    Stefanovic F; Galiana HL
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):140-50. PubMed ID: 26057850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.