These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37106623)

  • 21. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Combined Feedback Feedforward Control of a 3-Link Musculoskeletal System Based on the Iterative Training Method.
    Valizadeh A; Akbari AA
    Biomed Res Int; 2021; 2021():8701869. PubMed ID: 34790824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the role of proprioceptive information during arm movements using a model of the human arm.
    Stroeve S
    Motor Control; 1999 Apr; 3(2):158-85. PubMed ID: 10198148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation.
    Riess J; Abbas JJ
    IEEE Trans Rehabil Eng; 2000 Mar; 8(1):42-52. PubMed ID: 10779107
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinematic feedback control laws for generating natural arm movements.
    Kim D; Jang C; Park FC
    Bioinspir Biomim; 2014 Mar; 9(1):016002. PubMed ID: 24343165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling human target reaching with an adaptive observer implemented with dynamic neural fields.
    Fard FS; Hollensen P; Heinke D; Trappenberg TP
    Neural Netw; 2015 Dec; 72():13-30. PubMed ID: 26559472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From the motor cortex to the movement and back again.
    Teka WW; Hamade KC; Barnett WH; Kim T; Markin SN; Rybak IA; Molkov YI
    PLoS One; 2017; 12(6):e0179288. PubMed ID: 28632736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous neuronal ensemble control of simulated arm reaching by a human with tetraplegia.
    Chadwick EK; Blana D; Simeral JD; Lambrecht J; Kim SP; Cornwell AS; Taylor DM; Hochberg LR; Donoghue JP; Kirsch RF
    J Neural Eng; 2011 Jun; 8(3):034003. PubMed ID: 21543840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NeuroControl of movement: system identification approach for clinical benefit.
    Meskers CG; de Groot JH; de Vlugt E; Schouten AC
    Front Integr Neurosci; 2015; 9():48. PubMed ID: 26441563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-based assistance-as-needed for robotic movement therapy after stroke.
    Taheri H; Reinkensmeyer DJ; Wolbrecht ET
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2124-2127. PubMed ID: 28268751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An adaptive integral terminal sliding mode controller to track the human upper limb during front crawl swimming.
    Haghpanah SA; Khosrowpour E; Hematiyan MR
    Eur J Sport Sci; 2023 Apr; 23(4):499-509. PubMed ID: 35380513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
    Crowder DC; Abreu J; Kirsch RF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1016-1025. PubMed ID: 33999822
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Pons JL
    Eur J Transl Myol; 2016 Jun; 26(3):6164. PubMed ID: 27990245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Online corrective responses following target jump in altered gravitoinertial force field point to nested feedforward and feedback control.
    Chomienne L; Blouin J; Bringoux L
    J Neurophysiol; 2021 Jan; 125(1):154-165. PubMed ID: 33174494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Virtual reality-based assessment of basic laparoscopic skills using the Leap Motion controller.
    Lahanas V; Loukas C; Georgiou K; Lababidi H; Al-Jaroudi D
    Surg Endosc; 2017 Dec; 31(12):5012-5023. PubMed ID: 28466361
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum.
    Schweighofer N; Spoelstra J; Arbib MA; Kawato M
    Eur J Neurosci; 1998 Jan; 10(1):95-105. PubMed ID: 9753117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study.
    Wolpert DM; Ghahramani Z; Jordan MI
    Exp Brain Res; 1995; 103(3):460-70. PubMed ID: 7789452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An analysis of the precision and reliability of the leap motion sensor and its suitability for static and dynamic tracking.
    Guna J; Jakus G; Pogačnik M; Tomažič S; Sodnik J
    Sensors (Basel); 2014 Feb; 14(2):3702-20. PubMed ID: 24566635
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neuromechanical considerations for incorporating rhythmic arm movement in the rehabilitation of walking.
    Klimstra MD; Thomas E; Stoloff RH; Ferris DP; Zehr EP
    Chaos; 2009 Jun; 19(2):026102. PubMed ID: 19566262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.