These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37106647)

  • 1. Quantification of the Phenomena Affecting Reflective Arterial Photoplethysmography.
    Rovas G; Bikia V; Stergiopulos N
    Bioengineering (Basel); 2023 Apr; 10(4):. PubMed ID: 37106647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study.
    Shin H; Min SD
    Biomed Eng Online; 2017 Jan; 16(1):10. PubMed ID: 28086939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Vitro Investigation of Flow Profiles in Arteries Using the Photoplethysmograph.
    Pilt K; May JM; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7211-7214. PubMed ID: 34892763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function.
    Cox JR; Tan I; Qasem A; Avolio AP; Butlin M
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Artificial Arterial Pulse System for Development and Testing of PPG-Based Sensors.
    Hill JF; Dixon JA; Chase JG; Pretty CG
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved design of optical sensor for long-term measurement of arterial blood flow waveform.
    Djurić B; Suzić S; Stojadinović B; Nestorović Z; Ivanović M; Suzić-Lazić J; Nešić D; Mazić S; Tenne T; Zikich D; Žikić D
    Biomed Microdevices; 2017 Sep; 19(3):48. PubMed ID: 28560700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive monitoring by photoplethysmography.
    Sahni R
    Clin Perinatol; 2012 Sep; 39(3):573-83. PubMed ID: 22954270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive blood pressure estimation from wearable PPG sensors using peripheral artery pulse wave velocity measurements and multi-channel blind identification of local arterial dynamics.
    McCombie DB; Reisner AT; Asada HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3521-4. PubMed ID: 17946183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison between reflection-mode photoplethysmography and arterial diameter change detected by ultrasound at the region of radial artery.
    Wang CZ; Zheng YP
    Blood Press Monit; 2010 Aug; 15(4):213-9. PubMed ID: 20410816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI).
    Boonya-Ananta T; Rodriguez AJ; Ajmal A; Du Le VN; Hansen AK; Hutcheson JD; Ramella-Roman JC
    Sci Rep; 2021 Jan; 11(1):2570. PubMed ID: 33510428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro validation of measurement of volume elastic modulus using photoplethysmography.
    Njoum H; Kyriacou PA
    Med Eng Phys; 2018 Feb; 52():10-21. PubMed ID: 29290498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoplethysmography waveform analysis for classification of vascular tone and arterial blood pressure: Study based on neural networks.
    Echeverría NI; Scandurra AG; Acosta CM; Meschino GJ; Suarez Sipmann F; Tusman G
    Rev Esp Anestesiol Reanim (Engl Ed); 2023 Apr; 70(4):209-217. PubMed ID: 36868265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Arterial Blood Pressure Waveform from Photoplethysmogram Signal using Linear Transfer Function Approach.
    Dash A; Ghosh N; Patra A; Choudhury AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2691-2694. PubMed ID: 33018561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-stage multi-Gaussian fitting of conduit artery photoplethysmography waveform during induced unilateral hemodynamic events.
    Grabovskis A; Marcinkevics Z; Rubins U; Aivars JI
    J Biomed Opt; 2015 Mar; 20(3):035001. PubMed ID: 25751027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoplethysmography.
    Alian AA; Shelley KH
    Best Pract Res Clin Anaesthesiol; 2014 Dec; 28(4):395-406. PubMed ID: 25480769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The advantages of wearable green reflected photoplethysmography.
    Maeda Y; Sekine M; Tamura T
    J Med Syst; 2011 Oct; 35(5):829-34. PubMed ID: 20703690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cold stimulation on the harmonic structure of the blood pressure and photoplethysmography waveforms.
    Hsiu H; Huang SM; Hsu CL; Hu SF; Lin HW
    Photomed Laser Surg; 2012 Feb; 30(2):77-84. PubMed ID: 22136594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy.
    Garrett A; Kim B; Sie EJ; Gurel NZ; Marsili F; Boas DA; Roblyer D
    Biomed Opt Express; 2023 Apr; 14(4):1594-1607. PubMed ID: 37078049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
    Abay TY; Kyriacou PA
    J Clin Monit Comput; 2018 Jun; 32(3):447-455. PubMed ID: 28547651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.