BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 37106798)

  • 1. Overview of
    Chaaban T; Mohsen Y; Ezzeddine Z; Ghssein G
    Biology (Basel); 2023 Apr; 12(4):. PubMed ID: 37106798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yersiniabactin contributes to overcoming zinc restriction during
    Price SL; Vadyvaloo V; DeMarco JK; Brady A; Gray PA; Kehl-Fie TE; Garneau-Tsodikova S; Perry RD; Lawrenz MB
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716262
    [No Abstract]   [Full Text] [Related]  

  • 3. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation.
    Perry RD; Balbo PB; Jones HA; Fetherston JD; DeMoll E
    Microbiology (Reading); 1999 May; 145 ( Pt 5)():1181-1190. PubMed ID: 10376834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Review of
    Ghssein G; Ezzeddine Z
    Biology (Basel); 2022 Nov; 11(12):. PubMed ID: 36552220
    [No Abstract]   [Full Text] [Related]  

  • 5. Staphylopine, pseudopaline, and yersinopine dehydrogenases: A structural and kinetic analysis of a new functional class of opine dehydrogenase.
    McFarlane JS; Davis CL; Lamb AL
    J Biol Chem; 2018 May; 293(21):8009-8019. PubMed ID: 29618515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague.
    Sebbane F; Jarrett C; Gardner D; Long D; Hinnebusch BJ
    PLoS One; 2010 Dec; 5(12):e14379. PubMed ID: 21179420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Staphylopine and pseudopaline dehydrogenase from bacterial pathogens catalyze reversible reactions and produce stereospecific metallophores.
    McFarlane JS; Zhang J; Wang S; Lei X; Moran GR; Lamb AL
    J Biol Chem; 2019 Nov; 294(47):17988-18001. PubMed ID: 31615895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis.
    Gehring AM; DeMoll E; Fetherston JD; Mori I; Mayhew GF; Blattner FR; Walsh CT; Perry RD
    Chem Biol; 1998 Oct; 5(10):573-86. PubMed ID: 9818149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yersinia pestis YbtU and YbtT are involved in synthesis of the siderophore yersiniabactin but have different effects on regulation.
    Geoffroy VA; Fetherston JD; Perry RD
    Infect Immun; 2000 Aug; 68(8):4452-61. PubMed ID: 10899842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis of iron acquisition, metabolic and regulatory responses of Yersinia pestis to iron starvation.
    Pieper R; Huang ST; Parmar PP; Clark DJ; Alami H; Fleischmann RD; Perry RD; Peterson SN
    BMC Microbiol; 2010 Jan; 10():30. PubMed ID: 20113483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc transporters YbtX and ZnuABC are required for the virulence of Yersinia pestis in bubonic and pneumonic plague in mice.
    Bobrov AG; Kirillina O; Fosso MY; Fetherston JD; Miller MC; VanCleave TT; Burlison JA; Arnold WK; Lawrenz MB; Garneau-Tsodikova S; Perry RD
    Metallomics; 2017 Jun; 9(6):757-772. PubMed ID: 28540946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.
    Perry RD; Bobrov AG; Fetherston JD
    Metallomics; 2015 Jun; 7(6):965-78. PubMed ID: 25891079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis.
    Perry RD; Fetherston JD
    Microbes Infect; 2011 Sep; 13(10):808-17. PubMed ID: 21609780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Key Element Role of Metallophores in the Pathogenicity and Virulence of
    Ghssein G; Ezzeddine Z
    Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple rules govern the diversity of bacterial nicotianamine-like metallophores.
    Laffont C; Brutesco C; Hajjar C; Cullia G; Fanelli R; Ouerdane L; Cavelier F; Arnoux P
    Biochem J; 2019 Aug; 476(15):2221-2233. PubMed ID: 31300464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Yfe and Feo transporters are involved in microaerobic growth and virulence of Yersinia pestis in bubonic plague.
    Fetherston JD; Mier I; Truszczynska H; Perry RD
    Infect Immun; 2012 Nov; 80(11):3880-91. PubMed ID: 22927049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores.
    Laffont C; Arnoux P
    Metallomics; 2020 Oct; 12(10):1480-1493. PubMed ID: 33084706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yersiniabactin transport system is critical for the pathogenesis of bubonic and pneumonic plague.
    Fetherston JD; Kirillina O; Bobrov AG; Paulley JT; Perry RD
    Infect Immun; 2010 May; 78(5):2045-52. PubMed ID: 20160020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the aerobactin and ferric hydroxamate uptake systems of Yersinia pestis.
    Forman S; Nagiec MJ; Abney J; Perry RD; Fetherston JD
    Microbiology (Reading); 2007 Jul; 153(Pt 7):2332-2341. PubMed ID: 17600077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yersiniabactin production requires the thioesterase domain of HMWP2 and YbtD, a putative phosphopantetheinylate transferase.
    Bobrov AG; Geoffroy VA; Perry RD
    Infect Immun; 2002 Aug; 70(8):4204-14. PubMed ID: 12117929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.