BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 37107270)

  • 1. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases.
    Chavda V; Lu B
    Antioxidants (Basel); 2023 Apr; 12(4):. PubMed ID: 37107270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reverse electron transfer is activated during aging and contributes to aging and age-related disease.
    Rimal S; Tantray I; Li Y; Pal Khaket T; Li Y; Bhurtel S; Li W; Zeng C; Lu B
    EMBO Rep; 2023 Apr; 24(4):e55548. PubMed ID: 36794623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Mitochondrial Reverse Electron Transport in ROS Signaling: Potential Roles in Health and Disease.
    Scialò F; Fernández-Ayala DJ; Sanz A
    Front Physiol; 2017; 8():428. PubMed ID: 28701960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex III.
    Korge P; Calmettes G; John SA; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9882-9895. PubMed ID: 28450391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologic Implications of Reactive Oxygen Species Production by Mitochondrial Complex I Reverse Electron Transport.
    Onukwufor JO; Berry BJ; Wojtovich AP
    Antioxidants (Basel); 2019 Aug; 8(8):. PubMed ID: 31390791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reverse electron transfer results in a loss of flavin from mitochondrial complex I: Potential mechanism for brain ischemia reperfusion injury.
    Stepanova A; Kahl A; Konrad C; Ten V; Starkov AS; Galkin A
    J Cereb Blood Flow Metab; 2017 Dec; 37(12):3649-3658. PubMed ID: 28914132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species generation by reverse electron transfer at mitochondrial complex I under simulated early reperfusion conditions.
    Tabata Fukushima C; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    Redox Biol; 2024 Apr; 70():103047. PubMed ID: 38295577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of reverse electron transfer at mitochondrial complex I by unconventional Notch action in cancer stem cells.
    Ojha R; Tantray I; Rimal S; Mitra S; Cheshier S; Lu B
    Dev Cell; 2022 Jan; 57(2):260-276.e9. PubMed ID: 35077680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species Generation by Reverse Electron Transfer at Mitochondrial Complex I Under Simulated Early Reperfusion Conditions.
    Fukushima CT; Dancil IS; Clary H; Shah N; Nadtochiy SM; Brookes PS
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Electron Transfer by Respiratory Complex I Catalyzed in a Modular Proteoliposome System.
    Wright JJ; Biner O; Chung I; Burger N; Bridges HR; Hirst J
    J Am Chem Soc; 2022 Apr; 144(15):6791-6801. PubMed ID: 35380814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acid enhancement of ROS generation by complex-I reverse electron transport is balanced by acid inhibition of complex-II: Relevance for tissue reperfusion injury.
    Milliken AS; Kulkarni CA; Brookes PS
    Redox Biol; 2020 Oct; 37():101733. PubMed ID: 33007502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS.
    Chouchani ET; Pell VR; Gaude E; Aksentijević D; Sundier SY; Robb EL; Logan A; Nadtochiy SM; Ord ENJ; Smith AC; Eyassu F; Shirley R; Hu CH; Dare AJ; James AM; Rogatti S; Hartley RC; Eaton S; Costa ASH; Brookes PS; Davidson SM; Duchen MR; Saeb-Parsy K; Shattock MJ; Robinson AJ; Work LM; Frezza C; Krieg T; Murphy MP
    Nature; 2014 Nov; 515(7527):431-435. PubMed ID: 25383517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer.
    Pryde KR; Hirst J
    J Biol Chem; 2011 May; 286(20):18056-65. PubMed ID: 21393237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species production induced by pore opening in cardiac mitochondria: The role of complex II.
    Korge P; John SA; Calmettes G; Weiss JN
    J Biol Chem; 2017 Jun; 292(24):9896-9905. PubMed ID: 28450394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen-dependence of mitochondrial ROS production as detected by Amplex Red assay.
    Grivennikova VG; Kareyeva AV; Vinogradov AD
    Redox Biol; 2018 Jul; 17():192-199. PubMed ID: 29702406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial NADH redox potential impacts the reactive oxygen species production of reverse Electron transfer through complex I.
    Dubouchaud H; Walter L; Rigoulet M; Batandier C
    J Bioenerg Biomembr; 2018 Oct; 50(5):367-377. PubMed ID: 30136168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy.
    Duong QV; Levitsky Y; Dessinger MJ; Strubbe-Rivera JO; Bazil JN
    Function (Oxf); 2021; 2(6):zqab050. PubMed ID: 35330793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial ROS signalling requires uninterrupted electron flow and is lost during ageing in flies.
    Graham C; Stefanatos R; Yek AEH; Spriggs RV; Loh SHY; Uribe AH; Zhang T; Martins LM; Maddocks ODK; Scialo F; Sanz A
    Geroscience; 2022 Aug; 44(4):1961-1974. PubMed ID: 35355221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport.
    Florido J; Martinez-Ruiz L; Rodriguez-Santana C; López-Rodríguez A; Hidalgo-Gutiérrez A; Cottet-Rousselle C; Lamarche F; Schlattner U; Guerra-Librero A; Aranda-Martínez P; Acuña-Castroviejo D; López LC; Escames G
    J Pineal Res; 2022 Oct; 73(3):e12824. PubMed ID: 35986493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.