These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 37108083)
1. Structure-Based Design and Pharmacophore-Based Virtual Screening of Combinatorial Library of Triclosan Analogues Active against Enoyl-Acyl Carrier Protein Reductase of Bieri C; Esmel A; Keita M; Owono LCO; Dali B; Megnassan E; Miertus S; Frecer V Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108083 [TBL] [Abstract][Full Text] [Related]
2. Virtually Designed Triclosan-Based Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis and of Plasmodium falciparum. Owono Owono LC; Ntie-Kang F; Keita M; Megnassan E; Frecer V; Miertus S Mol Inform; 2015 May; 34(5):292-307. PubMed ID: 27490275 [TBL] [Abstract][Full Text] [Related]
3. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Kouman KC; Keita M; Kre N'Guessan R; Owono Owono LC; Megnassan E; Frecer V; Miertus S Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554227 [TBL] [Abstract][Full Text] [Related]
4. 3D-QSAR studies on triclosan derivatives as Plasmodium falciparum enoyl acyl carrier reductase inhibitors. Shah P; Siddiqi MI SAR QSAR Environ Res; 2010 Jul; 21(5-6):527-45. PubMed ID: 20818586 [TBL] [Abstract][Full Text] [Related]
5. Design and in silico screening of combinatorial library of antimalarial analogs of triclosan inhibiting Plasmodium falciparum enoyl-acyl carrier protein reductase. Frecer V; Megnassan E; Miertus S Eur J Med Chem; 2009 Jul; 44(7):3009-19. PubMed ID: 19217192 [TBL] [Abstract][Full Text] [Related]
6. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives. Kumar SP; George LB; Jasrai YT; Pandya HA SAR QSAR Environ Res; 2015; 26(1):61-77. PubMed ID: 25567142 [TBL] [Abstract][Full Text] [Related]
8. Identification of natural products against enoyl-acyl-carrier-protein reductase in malaria via combined pharmacophore modeling, molecular docking and simulations studies. Manhas A; Ghosh A; Verma Y; Das T; Jha PC J Biomol Struct Dyn; 2023 Mar; 41(5):2002-2015. PubMed ID: 35043754 [No Abstract] [Full Text] [Related]
9. Discovery of novel inhibitors targeting enoyl-acyl carrier protein reductase in Plasmodium falciparum by structure-based virtual screening. Nicola G; Smith CA; Lucumi E; Kuo MR; Karagyozov L; Fidock DA; Sacchettini JC; Abagyan R Biochem Biophys Res Commun; 2007 Jul; 358(3):686-91. PubMed ID: 17509532 [TBL] [Abstract][Full Text] [Related]
10. Green tea catechins potentiate triclosan binding to enoyl-ACP reductase from Plasmodium falciparum (PfENR). Sharma SK; Parasuraman P; Kumar G; Surolia N; Surolia A J Med Chem; 2007 Feb; 50(4):765-75. PubMed ID: 17263522 [TBL] [Abstract][Full Text] [Related]
11. Computer-Aided Design of Orally Bioavailable Pyrrolidine Carboxamide Inhibitors of Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Pharmacokinetic Profiles. Kouassi AF; Kone M; Keita M; Esmel A; Megnassan E; N'Guessan YT; Frecer V; Miertus S Int J Mol Sci; 2015 Dec; 16(12):29744-71. PubMed ID: 26703572 [TBL] [Abstract][Full Text] [Related]
12. Combined 3D-QSAR and Molecular Docking Study for Identification of Diverse Natural Products as Potent Pf ENR Inhibitors. Wadhwa P; Saha D; Sharma A Curr Comput Aided Drug Des; 2015; 11(3):245-57. PubMed ID: 26517356 [TBL] [Abstract][Full Text] [Related]
13. Identification of PfENR inhibitors: A hybrid structure-based approach in conjunction with molecular dynamics simulations. Manhas A; Patel A; Lone MY; Jha PK; Jha PC J Cell Biochem; 2018 Nov; 119(10):8490-8500. PubMed ID: 30105881 [TBL] [Abstract][Full Text] [Related]
14. Epigallocatechin gallate is a slow-tight binding inhibitor of enoyl-ACP reductase from Plasmodium falciparum. Banerjee T; Sharma SK; Surolia N; Surolia A Biochem Biophys Res Commun; 2008 Dec; 377(4):1238-42. PubMed ID: 18992222 [TBL] [Abstract][Full Text] [Related]
17. Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Neves BJ; Bueno RV; Braga RC; Andrade CH Bioorg Med Chem Lett; 2013 Apr; 23(8):2436-41. PubMed ID: 23499236 [TBL] [Abstract][Full Text] [Related]
18. Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. Perozzo R; Kuo M; Sidhu Ab; Valiyaveettil JT; Bittman R; Jacobs WR; Fidock DA; Sacchettini JC J Biol Chem; 2002 Apr; 277(15):13106-14. PubMed ID: 11792710 [TBL] [Abstract][Full Text] [Related]
19. SAR and pharmacophore models for the rhodanine inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. Kumar G; Banerjee T; Kapoor N; Surolia N; Surolia A IUBMB Life; 2010 Mar; 62(3):204-13. PubMed ID: 20131353 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of Plasmodium falciparum enoyl-ACP reductase and implications on drug discovery. Lindert S; McCammon JA Protein Sci; 2012 Nov; 21(11):1734-45. PubMed ID: 22969045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]