BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37108151)

  • 21. [Development of motor neuron restorative therapy in amyotrophic lateral sclerosis using hepatocyte growth factor].
    Aoki M; Warita H; Suzuki N; Itoyama Y
    Rinsho Shinkeigaku; 2009 Nov; 49(11):814-7. PubMed ID: 20030218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis.
    Zhang X; Chen S; Song L; Tang Y; Shen Y; Jia L; Le W
    Autophagy; 2014 Apr; 10(4):588-602. PubMed ID: 24441414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells.
    Naujock M; Stanslowsky N; Bufler S; Naumann M; Reinhardt P; Sterneckert J; Kefalakes E; Kassebaum C; Bursch F; Lojewski X; Storch A; Frickenhaus M; Boeckers TM; Putz S; Demestre M; Liebau S; Klingenstein M; Ludolph AC; Dengler R; Kim KS; Hermann A; Wegner F; Petri S
    Stem Cells; 2016 Jun; 34(6):1563-75. PubMed ID: 26946488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular analysis of SOD1 protein-aggregation propensity and toxicity: a case of ALS with slow progression harboring homozygous SOD1-D92G mutation.
    Sawamura M; Imamura K; Hikawa R; Enami T; Nagahashi A; Yamakado H; Ichijo H; Fujisawa T; Yamashita H; Minamiyama S; Kaido M; Wada H; Urushitani M; Inoue H; Egawa N; Takahashi R
    Sci Rep; 2022 Jul; 12(1):12636. PubMed ID: 35879519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In Vitro Models of Amyotrophic Lateral Sclerosis.
    Zhou L; Chen W; Jiang S; Xu R
    Cell Mol Neurobiol; 2023 Nov; 43(8):3783-3799. PubMed ID: 37870685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Co-deposition of SOD1, TDP-43 and p62 proteinopathies in ALS: evidence for multifaceted pathways underlying neurodegeneration.
    Trist BG; Fifita JA; Hogan A; Grima N; Smith B; Troakes C; Vance C; Shaw C; Al-Sarraj S; Blair IP; Double KL
    Acta Neuropathol Commun; 2022 Aug; 10(1):122. PubMed ID: 36008843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).
    Harlan BA; Pehar M; Sharma DR; Beeson G; Beeson CC; Vargas MR
    J Biol Chem; 2016 May; 291(20):10836-46. PubMed ID: 27002158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The fused in sarcoma protein forms cytoplasmic aggregates in motor neurons derived from integration-free induced pluripotent stem cells generated from a patient with familial amyotrophic lateral sclerosis carrying the FUS-P525L mutation.
    Liu X; Chen J; Liu W; Li X; Chen Q; Liu T; Gao S; Deng M
    Neurogenetics; 2015 Jul; 16(3):223-31. PubMed ID: 25912081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain.
    Gregory JM; Livesey MR; McDade K; Selvaraj BT; Barton SK; Chandran S; Smith C
    J Pathol; 2020 Jan; 250(1):67-78. PubMed ID: 31579943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses.
    Isobe T; Tooi N; Nakatsuji N; Aiba K
    Stem Cell Res; 2015 Nov; 15(3):459-468. PubMed ID: 26413785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation.
    Peviani M; Salvaneschi E; Bontempi L; Petese A; Manzo A; Rossi D; Salmona M; Collina S; Bigini P; Curti D
    Neurobiol Dis; 2014 Feb; 62():218-32. PubMed ID: 24141020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling sporadic ALS in iPSC-derived motor neurons identifies a potential therapeutic agent.
    Fujimori K; Ishikawa M; Otomo A; Atsuta N; Nakamura R; Akiyama T; Hadano S; Aoki M; Saya H; Sobue G; Okano H
    Nat Med; 2018 Oct; 24(10):1579-1589. PubMed ID: 30127392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A streamlined CRISPR workflow to introduce mutations and generate isogenic iPSCs for modeling amyotrophic lateral sclerosis.
    Deneault E; Chaineau M; Nicouleau M; Castellanos Montiel MJ; Franco Flores AK; Haghi G; Chen CX; Abdian N; Shlaifer I; Beitel LK; Durcan TM
    Methods; 2022 Jul; 203():297-310. PubMed ID: 34500068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Novel behavioural characteristics of the superoxide dismutase 1 G93A (SOD1
    Kreilaus F; Guerra S; Masanetz R; Menne V; Yerbury J; Karl T
    Genes Brain Behav; 2020 Feb; 19(2):e12604. PubMed ID: 31412164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models.
    Kato S; Kato M; Abe Y; Matsumura T; Nishino T; Aoki M; Itoyama Y; Asayama K; Awaya A; Hirano A; Ohama E
    Acta Neuropathol; 2005 Aug; 110(2):101-12. PubMed ID: 15983830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of proteome-wide degradation dynamics in ALS SOD1 iPSC-derived patient neurons reveals disrupted VCP homeostasis.
    Tsioras K; Smith KC; Edassery SL; Garjani M; Li Y; Williams C; McKenna ED; Guo W; Wilen AP; Hark TJ; Marklund SL; Ostrow LW; Gilthorpe JD; Ichida JK; Kalb RG; Savas JN; Kiskinis E
    Cell Rep; 2023 Oct; 42(10):113160. PubMed ID: 37776851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Generation of induced pluripotent stem cells from amyotrophic lateral sclerosis patientcarrying SOD1-V14M mutation].
    Liu X; Chen J; Li X; Gao S; Deng M
    Zhonghua Yi Xue Za Zhi; 2014 Jul; 94(27):2143-7. PubMed ID: 25327864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging.
    Japtok J; Lojewski X; Naumann M; Klingenstein M; Reinhardt P; Sterneckert J; Putz S; Demestre M; Boeckers TM; Ludolph AC; Liebau S; Storch A; Hermann A
    Neurobiol Dis; 2015 Oct; 82():420-429. PubMed ID: 26253605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuro-Cells therapy improves motor outcomes and suppresses inflammation during experimental syndrome of amyotrophic lateral sclerosis in mice.
    de Munter JPJM; Shafarevich I; Liundup A; Pavlov D; Wolters EC; Gorlova A; Veniaminova E; Umriukhin A; Kalueff A; Svistunov A; Kramer BW; Lesch KP; Strekalova T
    CNS Neurosci Ther; 2020 May; 26(5):504-517. PubMed ID: 31867846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.
    Kiskinis E; Sandoe J; Williams LA; Boulting GL; Moccia R; Wainger BJ; Han S; Peng T; Thams S; Mikkilineni S; Mellin C; Merkle FT; Davis-Dusenbery BN; Ziller M; Oakley D; Ichida J; Di Costanzo S; Atwater N; Maeder ML; Goodwin MJ; Nemesh J; Handsaker RE; Paull D; Noggle S; McCarroll SA; Joung JK; Woolf CJ; Brown RH; Eggan K
    Cell Stem Cell; 2014 Jun; 14(6):781-95. PubMed ID: 24704492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.