These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 37108215)
1. Transcriptome-Based Construction of the Gibberellin Metabolism and Signaling Pathways in Wu W; Zhu L; Wang P; Liao Y; Duan L; Lin K; Chen X; Li L; Xu J; Hu H; Xu ZF; Ni J Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108215 [TBL] [Abstract][Full Text] [Related]
2. Exogenous GA Liu QY; Guo GS; Qiu ZF; Li XD; Zeng BS; Fan CJ Protoplasma; 2018 Jul; 255(4):1107-1119. PubMed ID: 29423752 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation. Yu H; Soler M; San Clemente H; Mila I; Paiva JA; Myburg AA; Bouzayen M; Grima-Pettenati J; Cassan-Wang H Plant Cell Physiol; 2015 Apr; 56(4):700-14. PubMed ID: 25577568 [TBL] [Abstract][Full Text] [Related]
4. Genomewide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveals members that differentially impact secondary growth. Lu Q; Shao F; Macmillan C; Wilson IW; van der Merwe K; Hussey SG; Myburg AA; Dong X; Qiu D Plant Biotechnol J; 2018 Jan; 16(1):124-136. PubMed ID: 28499078 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome and metabolite analysis related to branch development in two genotypes of Eucalyptus urophylla. Yang H; Xu F; Liao H; Pan W; Zhang W; Xu B; Yang X Mol Genet Genomics; 2021 Sep; 296(5):1071-1083. PubMed ID: 34159440 [TBL] [Abstract][Full Text] [Related]
6. Genes expression profiles in vascular cambium of Eucalyptus urophylla × Eucalyptus grandis at different ages. Liu G; Wu Z; Luo J; Wang C; Shang X; Zhang G BMC Plant Biol; 2023 Oct; 23(1):500. PubMed ID: 37848837 [TBL] [Abstract][Full Text] [Related]
7. Eucalyptus hairy roots, a fast, efficient and versatile tool to explore function and expression of genes involved in wood formation. Plasencia A; Soler M; Dupas A; Ladouce N; Silva-Martins G; Martinez Y; Lapierre C; Franche C; Truchet I; Grima-Pettenati J Plant Biotechnol J; 2016 Jun; 14(6):1381-93. PubMed ID: 26579999 [TBL] [Abstract][Full Text] [Related]
8. Integrated transcriptomic and gibberellin analyses reveal genes related to branch development in Eucalyptus urophylla. Yang H; Liao H; Xu F; Zhang W; Xu B; Chen X; Zhu B; Pan W; Yang X Plant Physiol Biochem; 2022 Aug; 185():69-79. PubMed ID: 35661587 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide Characterization, Evolution, and Expression Profiling of Yan H; Wang Y; Hu B; Qiu Z; Zeng B; Fan C Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30974801 [No Abstract] [Full Text] [Related]
10. Special trends in CBF and DREB2 groups in Eucalyptus gunnii vs Eucalyptus grandis suggest that CBF are master players in the trade-off between growth and stress resistance. Nguyen HC; Cao PB; San Clemente H; Ployet R; Mounet F; Ladouce N; Harvengt L; Marque C; Teulieres C Physiol Plant; 2017 Apr; 159(4):445-467. PubMed ID: 27861954 [TBL] [Abstract][Full Text] [Related]
12. Integration analysis of transcriptome and proteome profiles brings new insights of somatic embryogenesis of two eucalyptus species. Chen S; Guo D; Deng Z; Tang Q; Li C; Xiao Y; Zhong L; Chen B BMC Plant Biol; 2024 Jun; 24(1):561. PubMed ID: 38877454 [TBL] [Abstract][Full Text] [Related]
13. Gene expression programs during callus development in tissue culture of two Eucalyptus species. Zhang Y; Li J; Li C; Chen S; Tang Q; Xiao Y; Zhong L; Chen Y; Chen B BMC Plant Biol; 2022 Jan; 22(1):1. PubMed ID: 34979920 [TBL] [Abstract][Full Text] [Related]
14. Gene expression in two contrasting hybrid clones of Eucalyptus camaldulensis x Eucalyptus urophylla grown under water deficit conditions. Martins GS; Freitas NC; Máximo WPF; Paiva LV J Plant Physiol; 2018 Oct; 229():122-131. PubMed ID: 30071503 [TBL] [Abstract][Full Text] [Related]
15. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis. Hefer CA; Mizrachi E; Myburg AA; Douglas CJ; Mansfield SD New Phytol; 2015 Jun; 206(4):1391-405. PubMed ID: 25659405 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive Transcriptome Reveals an Opposite Regulatory Effect of Plant Growth Retardants in Controlling Seedling Overgrowth between Roots and Shoots. Ji Y; Chen G; Zheng X; Zhong Q; Zhang M; Wu Z; Wen C; Liu M Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284415 [TBL] [Abstract][Full Text] [Related]
17. Genome-Wide Identification of Yuan T; Liang J; Dai J; Zhou XR; Liao W; Guo M; Aslam M; Li S; Cao G; Cao S Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887387 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis identifies genes involved in the somatic embryogenesis of Eucalyptus. Xiao Y; Li J; Zhang Y; Zhang X; Liu H; Qin Z; Chen B BMC Genomics; 2020 Nov; 21(1):803. PubMed ID: 33208105 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment. Fan C; Yao H; Qiu Z; Ma H; Zeng B Gene; 2018 Dec; 678():38-48. PubMed ID: 30077764 [TBL] [Abstract][Full Text] [Related]
20. Genome-Wide Identification of the Du K; Xia Y; Zhan D; Xu T; Lu T; Yang J; Kang X Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563644 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]