BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 37108252)

  • 1. New Insights on Metabolic Features of
    Blázquez B; San León D; Rojas A; Tortajada M; Nogales J
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108252
    [No Abstract]   [Full Text] [Related]  

  • 2. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear programming based gene expression model (LPM-GEM) predicts the carbon source for Bacillus subtilis.
    Thanamit K; Hoerhold F; Oswald M; Koenig R
    BMC Bioinformatics; 2022 Jun; 23(1):226. PubMed ID: 35689204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol.
    Hao T; Han B; Ma H; Fu J; Wang H; Wang Z; Tang B; Chen T; Zhao X
    Mol Biosyst; 2013 Aug; 9(8):2034-44. PubMed ID: 23666098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manually curated genome-scale reconstruction of the metabolic network of Bacillus megaterium DSM319.
    Aminian-Dehkordi J; Mousavi SM; Jafari A; Mijakovic I; Marashi SA
    Sci Rep; 2019 Dec; 9(1):18762. PubMed ID: 31822710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. etiBsu1209: A comprehensive multiscale metabolic model for Bacillus subtilis.
    Bi X; Cheng Y; Xu X; Lv X; Liu Y; Li J; Du G; Chen J; Ledesma-Amaro R; Liu L
    Biotechnol Bioeng; 2023 Jun; 120(6):1623-1639. PubMed ID: 36788025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction and analysis of the genetic and metabolic regulatory networks of the central metabolism of Bacillus subtilis.
    Goelzer A; Bekkal Brikci F; Martin-Verstraete I; Noirot P; Bessières P; Aymerich S; Fromion V
    BMC Syst Biol; 2008 Feb; 2():20. PubMed ID: 18302748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering design to enhance (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis based on flux balance analysis.
    Vikromvarasiri N; Shirai T; Kondo A
    Microb Cell Fact; 2021 Oct; 20(1):196. PubMed ID: 34627250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Metabolic Modeling Pipeline in KBase to Categorize Reactions, Predict Essential Genes, and Predict Pathways in an Isolate Genome.
    Allen BH; Gupta N; Edirisinghe JN; Faria JP; Henry CS
    Methods Mol Biol; 2022; 2349():291-320. PubMed ID: 34719000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iBsu1103: a new genome-scale metabolic model of Bacillus subtilis based on SEED annotations.
    Henry CS; Zinner JF; Cohoon MP; Stevens RL
    Genome Biol; 2009; 10(6):R69. PubMed ID: 19555510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond.
    Cui W; Han L; Suo F; Liu Z; Zhou L; Zhou Z
    World J Microbiol Biotechnol; 2018 Sep; 34(10):145. PubMed ID: 30203131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular pathway engineering of key carbon-precursor supply-pathways for improved N-acetylneuraminic acid production in Bacillus subtilis.
    Zhang X; Liu Y; Liu L; Wang M; Li J; Du G; Chen J
    Biotechnol Bioeng; 2018 Sep; 115(9):2217-2231. PubMed ID: 29896807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model.
    Tanaka K; Henry CS; Zinner JF; Jolivet E; Cohoon MP; Xia F; Bidnenko V; Ehrlich SD; Stevens RL; Noirot P
    Nucleic Acids Res; 2013 Jan; 41(1):687-99. PubMed ID: 23109554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using genome-scale metabolic models to compare serovars of the foodborne pathogen Listeria monocytogenes.
    Metz ZP; Ding T; Baumler DJ
    PLoS One; 2018; 13(6):e0198584. PubMed ID: 29879172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications.
    Ghasemi-Kahrizsangi T; Marashi SA; Hosseini Z
    Iran J Biotechnol; 2018 Aug; 16(3):e1684. PubMed ID: 31457023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An updated metabolic view of the Bacillus subtilis 168 genome.
    Belda E; Sekowska A; Le Fèvre F; Morgat A; Mornico D; Ouzounis C; Vallenet D; Médigue C; Danchin A
    Microbiology (Reading); 2013 Apr; 159(Pt 4):757-770. PubMed ID: 23429746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic redesign of central carbon and redox metabolism for high yield production of N-acetylglucosamine in Bacillus subtilis.
    Gu Y; Lv X; Liu Y; Li J; Du G; Chen J; Rodrigo LA; Liu L
    Metab Eng; 2019 Jan; 51():59-69. PubMed ID: 30343048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of genome-reduced Bacillus subtilis strains and their application for the production of guanosine and thymidine.
    Li Y; Zhu X; Zhang X; Fu J; Wang Z; Chen T; Zhao X
    Microb Cell Fact; 2016 Jun; 15():94. PubMed ID: 27260256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.