These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37108252)

  • 21. Predicting stress response and improved protein overproduction in Bacillus subtilis.
    Tibocha-Bonilla JD; Zuñiga C; Lekbua A; Lloyd C; Rychel K; Short K; Zengler K
    NPJ Syst Biol Appl; 2022 Dec; 8(1):50. PubMed ID: 36575180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A model industrial workhorse: Bacillus subtilis strain 168 and its genome after a quarter of a century.
    Bremer E; Calteau A; Danchin A; Harwood C; Helmann JD; Médigue C; Palsson BO; Sekowska A; Vallenet D; Zuniga A; Zuniga C
    Microb Biotechnol; 2023 Jun; 16(6):1203-1231. PubMed ID: 37002859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic engineering of Bacillus subtilis for l-valine overproduction.
    Westbrook AW; Ren X; Moo-Young M; Chou CP
    Biotechnol Bioeng; 2018 Nov; 115(11):2778-2792. PubMed ID: 29981237
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ecBSU1: A Genome-Scale Enzyme-Constrained Model of
    Wu K; Mao Z; Mao Y; Niu J; Cai J; Yuan Q; Yun L; Liao X; Wang Z; Ma H
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances and prospects of Bacillus subtilis cellular factories: From rational design to industrial applications.
    Gu Y; Xu X; Wu Y; Niu T; Liu Y; Li J; Du G; Liu L
    Metab Eng; 2018 Nov; 50():109-121. PubMed ID: 29775652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites.
    Kabisch J; Pratzka I; Meyer H; Albrecht D; Lalk M; Ehrenreich A; Schweder T
    Microb Cell Fact; 2013 Jul; 12():72. PubMed ID: 23886069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic Remodeling during Biofilm Development of Bacillus subtilis.
    Pisithkul T; Schroeder JW; Trujillo EA; Yeesin P; Stevenson DM; Chaiamarit T; Coon JJ; Wang JD; Amador-Noguez D
    mBio; 2019 May; 10(3):. PubMed ID: 31113899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a Glycerol-Inducible Expression System for High-Yield Heterologous Protein Production in Bacillus subtilis.
    Han L; Chen Q; Luo J; Cui W; Zhou Z
    Microbiol Spectr; 2022 Oct; 10(5):e0132222. PubMed ID: 36036634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative transcriptome analysis for metabolic engineering.
    Shi S; Chen T; Zhao X
    Methods Mol Biol; 2013; 985():447-58. PubMed ID: 23417817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Large-Scale and Scarless Genome Engineering Enables the Construction and Screening of
    Tian J; Xing B; Li M; Xu C; Huo YX; Guo S
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563243
    [No Abstract]   [Full Text] [Related]  

  • 31. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on high-throughput phenotyping and gene essentiality data.
    Oh YK; Palsson BO; Park SM; Schilling CH; Mahadevan R
    J Biol Chem; 2007 Sep; 282(39):28791-28799. PubMed ID: 17573341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.
    Guo J; Zhang H; Wang C; Chang JW; Chen LL
    Res Microbiol; 2016 May; 167(4):282-289. PubMed ID: 26776566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning.
    Chen C; Liao C; Liu YY
    Nat Commun; 2023 Apr; 14(1):2375. PubMed ID: 37185345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of two metabolic engineering approaches for (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis.
    Vikromvarasiri N; Noda S; Shirai T; Kondo A
    J Biol Eng; 2023 Jan; 17(1):3. PubMed ID: 36627686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis.
    Li S; Huang D; Li Y; Wen J; Jia X
    Microb Cell Fact; 2012 Aug; 11():101. PubMed ID: 22862776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling leucine's metabolic pathway and knockout prediction improving the production of surfactin, a biosurfactant from Bacillus subtilis.
    Coutte F; Niehren J; Dhali D; John M; Versari C; Jacques P
    Biotechnol J; 2015 Aug; 10(8):1216-34. PubMed ID: 26220295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth strategy of microbes on mixed carbon sources.
    Wang X; Xia K; Yang X; Tang C
    Nat Commun; 2019 Mar; 10(1):1279. PubMed ID: 30894528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-scale reconstruction of Salinispora tropica CNB-440 metabolism to study strain-specific adaptation.
    Contador CA; Rodríguez V; Andrews BA; Asenjo JA
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1075-90. PubMed ID: 26459337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
    Kleijn RJ; Buescher JM; Le Chat L; Jules M; Aymerich S; Sauer U
    J Biol Chem; 2010 Jan; 285(3):1587-96. PubMed ID: 19917605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.