These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose. Yan P; Wu Y; Yang L; Wang Z; Chen T Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191 [TBL] [Abstract][Full Text] [Related]
44. Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid - unexpected importance of carbon source is an advantage for space application. Averesch NJH; Rothschild LJ Microb Biotechnol; 2019 Jul; 12(4):703-714. PubMed ID: 30980511 [TBL] [Abstract][Full Text] [Related]
45. Carbon catabolite control of the metabolic network in Bacillus subtilis. Fujita Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299 [TBL] [Abstract][Full Text] [Related]
46. Improvement of uridine production in Bacillus subtilis by metabolic engineering. Wang Y; Ma R; Liu L; He L; Ban R Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923 [TBL] [Abstract][Full Text] [Related]
47. Stoichiometric growth model for riboflavin-producing Bacillus subtilis. Dauner M; Sauer U Biotechnol Bioeng; 2001 Sep; 76(2):132-43. PubMed ID: 11505383 [TBL] [Abstract][Full Text] [Related]
48. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production. Niu T; Lv X; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L Biotechnol Bioeng; 2021 Jan; 118(1):383-396. PubMed ID: 32965679 [TBL] [Abstract][Full Text] [Related]
49. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine. Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558 [TBL] [Abstract][Full Text] [Related]
50. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Dauner M; Bailey JE; Sauer U Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384 [TBL] [Abstract][Full Text] [Related]
51. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data. Costa RS; Vinga S Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889 [TBL] [Abstract][Full Text] [Related]
52. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Buffing MF; Link H; Christodoulou D; Sauer U Sci Rep; 2018 Aug; 8(1):11760. PubMed ID: 30082753 [TBL] [Abstract][Full Text] [Related]
53. Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation. Zhou K; Zou R; Zhang C; Stephanopoulos G; Too HP Biotechnol Bioeng; 2013 Sep; 110(9):2556-61. PubMed ID: 23483530 [TBL] [Abstract][Full Text] [Related]