These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37108252)

  • 41. Modulation of culture medium confers high-specificity production of isopentenol in Bacillus subtilis.
    Phulara SC; Chaturvedi P; Chaurasia D; Diwan B; Gupta P
    J Biosci Bioeng; 2019 Apr; 127(4):458-464. PubMed ID: 30862359
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-quality genome-scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities.
    Nogales J; Mueller J; Gudmundsson S; Canalejo FJ; Duque E; Monk J; Feist AM; Ramos JL; Niu W; Palsson BO
    Environ Microbiol; 2020 Jan; 22(1):255-269. PubMed ID: 31657101
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Engineering genome-reduced Bacillus subtilis for acetoin production from xylose.
    Yan P; Wu Y; Yang L; Wang Z; Chen T
    Biotechnol Lett; 2018 Feb; 40(2):393-398. PubMed ID: 29236191
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of Bacillus subtilis for production of para-aminobenzoic acid - unexpected importance of carbon source is an advantage for space application.
    Averesch NJH; Rothschild LJ
    Microb Biotechnol; 2019 Jul; 12(4):703-714. PubMed ID: 30980511
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improvement of uridine production in Bacillus subtilis by metabolic engineering.
    Wang Y; Ma R; Liu L; He L; Ban R
    Biotechnol Lett; 2018 Jan; 40(1):151-155. PubMed ID: 29038923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stoichiometric growth model for riboflavin-producing Bacillus subtilis.
    Dauner M; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):132-43. PubMed ID: 11505383
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The elucidation of phosphosugar stress response in Bacillus subtilis guides strain engineering for high N-acetylglucosamine production.
    Niu T; Lv X; Liu Y; Li J; Du G; Ledesma-Amaro R; Liu L
    Biotechnol Bioeng; 2021 Jan; 118(1):383-396. PubMed ID: 32965679
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering a Glucosamine-6-phosphate Responsive glmS Ribozyme Switch Enables Dynamic Control of Metabolic Flux in Bacillus subtilis for Overproduction of N-Acetylglucosamine.
    Niu T; Liu Y; Li J; Koffas M; Du G; Alper HS; Liu L
    ACS Synth Biol; 2018 Oct; 7(10):2423-2435. PubMed ID: 30138558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.
    Dauner M; Bailey JE; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing Escherichia coli metabolism models and simulation approaches in phenotype predictions: Validation against experimental data.
    Costa RS; Vinga S
    Biotechnol Prog; 2018 Nov; 34(6):1344-1354. PubMed ID: 30294889
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis.
    Buffing MF; Link H; Christodoulou D; Sauer U
    Sci Rep; 2018 Aug; 8(1):11760. PubMed ID: 30082753
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optimization of amorphadiene synthesis in bacillus subtilis via transcriptional, translational, and media modulation.
    Zhou K; Zou R; Zhang C; Stephanopoulos G; Too HP
    Biotechnol Bioeng; 2013 Sep; 110(9):2556-61. PubMed ID: 23483530
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SubtiWiki 2.0--an integrated database for the model organism Bacillus subtilis.
    Michna RH; Zhu B; Mäder U; Stülke J
    Nucleic Acids Res; 2016 Jan; 44(D1):D654-62. PubMed ID: 26433225
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reconstruction and Analysis of Central Metabolism in Microbes.
    Edirisinghe JN; Faria JP; Harris NL; Allen BH; Henry CS
    Methods Mol Biol; 2018; 1716():111-129. PubMed ID: 29222751
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Accelerating the reconstruction of genome-scale metabolic networks.
    Notebaart RA; van Enckevort FH; Francke C; Siezen RJ; Teusink B
    BMC Bioinformatics; 2006 Jun; 7():296. PubMed ID: 16772023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimal resource allocation enables mathematical exploration of microbial metabolic configurations.
    Tournier L; Goelzer A; Fromion V
    J Math Biol; 2017 Dec; 75(6-7):1349-1380. PubMed ID: 28361242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis.
    García-Moyano A; Larsen Ø; Gaykawad S; Christakou E; Boccadoro C; Puntervoll P; Bjerga GEK
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33097498
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis.
    Westbrook AW; Ren X; Oh J; Moo-Young M; Chou CP
    Metab Eng; 2018 May; 47():401-413. PubMed ID: 29698777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.