BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 37108491)

  • 1. Membrane Adaptations and Cellular Responses of
    Rao A; de Kok NAW; Driessen AJM
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
    Zeng Z; Chen H; Yang H; Chen Y; Yang W; Feng X; Pei H; Welander PV
    Nat Commun; 2022 Mar; 13(1):1545. PubMed ID: 35318330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calditol-linked membrane lipids are required for acid tolerance in
    Zeng Z; Liu XL; Wei JH; Summons RE; Welander PV
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12932-12937. PubMed ID: 30518563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy flux controls tetraether lipid cyclization in Sulfolobus acidocaldarius.
    Zhou A; Weber Y; Chiu BK; Elling FJ; Cobban AB; Pearson A; Leavitt WD
    Environ Microbiol; 2020 Jan; 22(1):343-353. PubMed ID: 31696620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress.
    Yang W; Chen H; Chen Y; Chen A; Feng X; Zhao B; Zheng F; Fang H; Zhang C; Zeng Z
    Environ Microbiol; 2023 Feb; 25(2):575-587. PubMed ID: 36495168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean.
    Zeng Z; Liu XL; Farley KR; Wei JH; Metcalf WW; Summons RE; Welander PV
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22505-22511. PubMed ID: 31591189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple environmental parameters impact lipid cyclization in Sulfolobus acidocaldarius.
    Cobban A; Zhang Y; Zhou A; Weber Y; Elling FJ; Pearson A; Leavitt WD
    Environ Microbiol; 2020 Sep; 22(9):4046-4056. PubMed ID: 32783317
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Bonanno A; Blake RC; Chong PL
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene deletions leading to a reduction in the number of cyclopentane rings in Sulfolobus acidocaldarius tetraether lipids.
    Guan Z; Delago A; Nußbaum P; Meyer BH; Albers SV; Eichler J
    FEMS Microbiol Lett; 2018 Jan; 365(1):. PubMed ID: 29211845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 12. Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress.
    Benninghoff JC; Kuschmierz L; Zhou X; Albersmeier A; Pham TK; Busche T; Wright PC; Kalinowski J; Makarova KS; Bräsen C; Flemming HC; Wingender J; Siebers B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741627
    [No Abstract]   [Full Text] [Related]  

  • 13. Distribution of intact and core membrane lipids of archaeal glycerol dialkyl glycerol tetraethers among size-fractionated particulate organic matter in hood canal, puget sound.
    Ingalls AE; Huguet C; Truxal LT
    Appl Environ Microbiol; 2012 Mar; 78(5):1480-90. PubMed ID: 22226949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode of carbon and energy metabolism shifts lipid composition in the thermoacidophile
    Rhim JH; Zhou A; Amenabar MJ; Boyer GM; Elling FJ; Weber Y; Pearson A; Boyd ES; Leavitt WD
    Appl Environ Microbiol; 2024 Feb; 90(2):e0136923. PubMed ID: 38236067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.
    Xie W; Zhang CL; Wang J; Chen Y; Zhu Y; de la Torre JR; Dong H; Hartnett HE; Hedlund BP; Klotz MG
    Environ Microbiol; 2015 May; 17(5):1600-14. PubMed ID: 25142282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification.
    Garcia AA; Chadwick GL; Liu XL; Welander PV
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2318761121. PubMed ID: 38885389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea.
    Rattanasriampaipong R; Zhang YG; Pearson A; Hedlund BP; Zhang S
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2123193119. PubMed ID: 35905325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the specific growth rate on the lipid composition of Sulfolobus acidocaldarius.
    Quehenberger J; Pittenauer E; Allmaier G; Spadiut O
    Extremophiles; 2020 May; 24(3):413-420. PubMed ID: 32200441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius.
    In't Veld G; Elferink MG; Driessen AJ; Konings WN
    Biochemistry; 1992 Dec; 31(49):12493-9. PubMed ID: 1463735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraether archaeal lipids promote long-term survival in extreme conditions.
    Liman GLS; Garcia AA; Fluke KA; Anderson HR; Davidson SC; Welander PV; Santangelo TJ
    Mol Microbiol; 2024 May; 121(5):882-894. PubMed ID: 38372181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.