BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37108518)

  • 1. Structural Insights into M1 Muscarinic Acetylcholine Receptor Signaling Bias between Gαq and β-Arrestin through BRET Assays and Molecular Docking.
    Wang D; Yao Y; Wang S; Hou Y; Zhao L; Wang H; Chen H; Xu J
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors.
    Namkung Y; LeGouill C; Kumar S; Cao Y; Teixeira LB; Lukasheva V; Giubilaro J; Simões SC; Longpré JM; Devost D; Hébert TE; Piñeyro G; Leduc R; Costa-Neto CM; Bouvier M; Laporte SA
    Sci Signal; 2018 Dec; 11(559):. PubMed ID: 30514808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling allostery within the angiotensin II type 1 receptor for Gα
    Cao Y; van der Velden WJC; Namkung Y; Nivedha AK; Cho A; Sedki D; Holleran B; Lee N; Leduc R; Muk S; Le K; Bhattacharya S; Vaidehi N; Laporte SA
    Sci Signal; 2023 Aug; 16(797):eadf2173. PubMed ID: 37552769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRET-based assay to specifically monitor β
    Parichatikanond W; Kyaw ETH; Madreiter-Sokolowski CT; Mangmool S
    Methods Cell Biol; 2021; 166():67-81. PubMed ID: 34752340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis for activation and biased signaling at the thrombin-activated GPCR proteinase activated receptor-4 (PAR4).
    Thibeault PE; LeSarge JC; Arends D; Fernandes M; Chidiac P; Stathopulos PB; Luyt LG; Ramachandran R
    J Biol Chem; 2020 Feb; 295(8):2520-2540. PubMed ID: 31892516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRET-Based Biosensors to Measure Agonist Efficacies in Histamine H
    Verweij EWE; Bosma R; Gao M; van den Bor J; Al Araaj B; de Munnik SM; Ma X; Leurs R; Vischer HF
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Mechanisms of Diverse Activation Stimulated by Different Biased Agonists for the β2-Adrenergic Receptor.
    Chen J; Liu J; Yuan Y; Chen X; Zhang F; Pu X
    J Chem Inf Model; 2022 Nov; 62(21):5175-5192. PubMed ID: 34802238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking.
    Yeatman HR; Lane JR; Choy KH; Lambert NA; Sexton PM; Christopoulos A; Canals M
    J Biol Chem; 2014 May; 289(22):15856-66. PubMed ID: 24753247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of BRET to Measure β-Arrestin Recruitment at Oxytocin and Vasopressin Receptors.
    Muratspahić E; Gattringer J; Gruber CW
    Methods Mol Biol; 2022; 2384():221-229. PubMed ID: 34550577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and dynamic insights into supra-physiological activation and allosteric modulation of a muscarinic acetylcholine receptor.
    Xu J; Wang Q; Hübner H; Hu Y; Niu X; Wang H; Maeda S; Inoue A; Tao Y; Gmeiner P; Du Y; Jin C; Kobilka BK
    Nat Commun; 2023 Jan; 14(1):376. PubMed ID: 36690613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Involvement of ACKR3 C-Tail in β-Arrestin Recruitment, Trafficking and Internalization.
    Zarca A; Perez C; van den Bor J; Bebelman JP; Heuninck J; de Jonker RJF; Durroux T; Vischer HF; Siderius M; Smit MJ
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799570
    [No Abstract]   [Full Text] [Related]  

  • 13. The NPXXY Motif Regulates β-Arrestin Recruitment by the CB1 Cannabinoid Receptor.
    Leo LM; Al-Zoubi R; Hurst DP; Stephan AP; Zhao P; Tilley DG; Miess E; Schulz S; Abood ME; Reggio PH
    Cannabis Cannabinoid Res; 2023 Oct; 8(5):731-748. PubMed ID: 35792570
    [No Abstract]   [Full Text] [Related]  

  • 14. Carfentanil is a β-arrestin-biased agonist at the μ opioid receptor.
    Ramos-Gonzalez N; Groom S; Sutcliffe KJ; Bancroft S; Bailey CP; Sessions RB; Henderson G; Kelly E
    Br J Pharmacol; 2023 Sep; 180(18):2341-2360. PubMed ID: 37005796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct roles of the extracellular surface residues of glucagon-like peptide-1 receptor in β-arrestin 1/2 signaling.
    Lei S; Meng Q; Liu Y; Liu Q; Dai A; Cai X; Wang MW; Zhou Q; Zhou H; Yang D
    Eur J Pharmacol; 2024 Apr; 968():176419. PubMed ID: 38360293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of biased signaling at a G protein-coupled receptor in overexpressed systems.
    Li A; Liu S; Huang R; Ahn S; Lefkowitz RJ
    PLoS One; 2023; 18(3):e0283477. PubMed ID: 36961836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling.
    M'Kadmi C; Leyris JP; Onfroy L; Galés C; Saulière A; Gagne D; Damian M; Mary S; Maingot M; Denoyelle S; Verdié P; Fehrentz JA; Martinez J; Banères JL; Marie J
    J Biol Chem; 2015 Nov; 290(45):27021-27039. PubMed ID: 26363071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological Characterization of µ-Opioid Receptor Agonists with Biased G Protein or β-Arrestin Signaling, and Computational Study of Conformational Changes during Receptor Activation.
    Piekielna-Ciesielska J; Artali R; Azzam AAH; Lambert DG; Kluczyk A; Gentilucci L; Janecka A
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33375124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tacrine-xanomeline and tacrine-iperoxo hybrid ligands: Synthesis and biological evaluation at acetylcholinesterase and M
    Maspero M; Volpato D; Cirillo D; Yuan Chen N; Messerer R; Sotriffer C; De Amici M; Holzgrabe U; Dallanoce C
    Bioorg Chem; 2020 Mar; 96():103633. PubMed ID: 32032848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Angiotensin II type 1 receptor variants alter endosomal receptor-β-arrestin complex stability and MAPK activation.
    Cao Y; Kumar S; Namkung Y; Gagnon L; Cho A; Laporte SA
    J Biol Chem; 2020 Sep; 295(38):13169-13180. PubMed ID: 32703898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.