These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37108617)

  • 1. The Future of Energy Storage: Advancements and Roadmaps for Lithium-Ion Batteries.
    Adnan M
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Guar Gum and its Derivatives as Green Binder/Separator for Advanced Lithium-Ion Batteries.
    Kaur S; Santra S
    ChemistryOpen; 2022 Feb; 11(2):e202100209. PubMed ID: 35103411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging applications of atomic layer deposition for lithium-ion battery studies.
    Meng X; Yang XQ; Sun X
    Adv Mater; 2012 Jul; 24(27):3589-615. PubMed ID: 22700328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries.
    Li H; Wang H; Xu Z; Wang K; Ge M; Gan L; Zhang Y; Tang Y; Chen S
    Small; 2021 Oct; 17(43):e2103679. PubMed ID: 34580989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano active materials for lithium-ion batteries.
    Wang Y; Li H; He P; Hosono E; Zhou H
    Nanoscale; 2010 Aug; 2(8):1294-305. PubMed ID: 20820717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second life batteries lifespan: Rest of useful life and environmental analysis.
    Casals LC; Amante García B; Canal C
    J Environ Manage; 2019 Feb; 232():354-363. PubMed ID: 30496965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and economic evaluation of remanufacturing lithium-ion batteries from electric vehicles.
    Xiong S; Ji J; Ma X
    Waste Manag; 2020 Feb; 102():579-586. PubMed ID: 31770692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization.
    Tian Y; Zeng G; Rutt A; Shi T; Kim H; Wang J; Koettgen J; Sun Y; Ouyang B; Chen T; Lun Z; Rong Z; Persson K; Ceder G
    Chem Rev; 2021 Feb; 121(3):1623-1669. PubMed ID: 33356176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and management of waste electric vehicle batteries in China.
    Xu C; Zhang W; He W; Li G; Huang J; Zhu H
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):20825-20830. PubMed ID: 28803394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterials for lithium-ion rechargeable batteries.
    Liu HK; Wang GX; Guo Z; Wang J; Konstantinov K
    J Nanosci Nanotechnol; 2006 Jan; 6(1):1-15. PubMed ID: 16573064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced Separators for Lithium-Ion and Lithium-Sulfur Batteries: A Review of Recent Progress.
    Xiang Y; Li J; Lei J; Liu D; Xie Z; Qu D; Li K; Deng T; Tang H
    ChemSusChem; 2016 Nov; 9(21):3023-3039. PubMed ID: 27667306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local structure of layered oxide electrode materials for lithium-ion batteries.
    Bareño J; Lei CH; Wen JG; Kang SH; Petrov I; Abraham DP
    Adv Mater; 2010 Mar; 22(10):1122-7. PubMed ID: 20401936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renewable-Biomolecule-Based Full Lithium-Ion Batteries.
    Hu P; Wang H; Yang Y; Yang J; Lin J; Guo L
    Adv Mater; 2016 May; 28(18):3486-92. PubMed ID: 26989989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries.
    VahidMohammadi A; Hadjikhani A; Shahbazmohamadi S; Beidaghi M
    ACS Nano; 2017 Nov; 11(11):11135-11144. PubMed ID: 29039915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.