These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37109800)

  • 1. Peculiarities of Fatigue Crack Growth in Steel 17H1S after Long-Term Operations on a Gas Pipeline.
    Vira V; Krechkovska H; Kulyk V; Duriagina Z; Student O; Vasyliv B; Cherkes V; Loskutova T
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of Operational Degradation of Pipeline Steels.
    Nykyforchyn H; Zvirko O; Dzioba I; Krechkovska H; Hredil M; Tsyrulnyk O; Student O; Lipiec S; Pala R
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Corrosion, Mechanical Properties and Hydrogen Embrittlement of Casing Pipe Steels with Different Microstructure.
    Zvirko O; Tsyrulnyk O; Lipiec S; Dzioba I
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Corrosive Fatigue Life of Submarine Pipelines of API 5L X56 Steel Materials.
    Gao X; Shao Y; Xie L; Wang Y; Yang D
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30925744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tensile Deformation and Fracture Behavior of API-5L X70 Line Pipe Steel.
    Lobanov ML; Khotinov VA; Urtsev VN; Danilov SV; Urtsev NV; Platov SI; Stepanov SI
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Hydrogen Embrittlement Susceptibility and Fracture Toughness Drop after in situ Hydrogen Cathodic Charging for an X65 Pipeline Steel.
    Kyriakopoulou HP; Karmiris-Obratański P; Tazedakis AS; Daniolos NM; Dourdounis EC; Manolakos DE; Pantelis D
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32325971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specimen Size Effect on the Tensile Properties of Rolled Steel of Long-Term-Operated Portal Crane.
    Zvirko O; Dzioba I; Hredil M; Pała R; Oliynyk O; Furmańczyk P
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing.
    Hu MJ; Ji LK; Chi Q; Ma QR
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Microstructures and Fatigue Properties for Dual-Phase Pipeline Steels by Gleeble Simulation of Heat-Affected Zone.
    Zhao Z; Xu P; Cheng H; Miao J; Xiao F
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31226851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodology to evaluate stress corrosion cracking in ethanol environments, applied to circumferential welds on API 5 L steel pipelines.
    Santos EA; Giorgetti V; Marcomini JB; Monteiro MR; Kliauga AM; Sordi VL; Rovere CAD
    MethodsX; 2022; 9():101675. PubMed ID: 35392104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen Accumulation and Distribution in Pipeline Steel in Intensified Corrosion Conditions.
    Titov AI; Lun-Fu AV; Gayvaronskiy AV; Bubenchikov MA; Bubenchikov AM; Lider AM; Syrtanov MS; Kudiiarov VN
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31052204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue Crack Growth Behavior of the MIG Welded Joint of 06Cr19Ni10 Stainless Steel.
    Tang L; Qian C; Ince A; Zheng J; Li H; Han Z
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30072599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Solution Annealing on Fatigue Crack Propagation in the AISI 304L TRIP Steel.
    Jambor M; Vojtek T; Pokorný P; Šmíd M
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33801909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Investigation of Fatigue Crack Growth Behavior of the 2.25Cr1Mo0.25V Steel Welded Joint Used in Hydrogenation Reactors.
    Song Y; Chai M; Han Z
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33804545
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of finish rolling temperature and yield ratio on variations in yield strength after pipe-forming of API-X65 line-pipe steels.
    Kim DW; Kim WK; Bae JH; Choi WD; Sohn SS; Lee S
    Sci Rep; 2020 Sep; 10(1):14742. PubMed ID: 32901069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior Comprehensive Mechanical Properties of a Low-Carbon Medium Manganese Steel for Replacing AISI 4330 Steel in the Oil and Gas Industry.
    Sun X; Liu G; Liang X; Tong S
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Post-Weld Heat Treatment on Microstructure and Fracture Toughness of X80 Pipeline Steel Welded Joint.
    Wang X; Wang D; Dai L; Deng C; Li C; Wang Y; Shen K
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints.
    Sekiguchi Y; Sato C
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elasto-Plastic Fatigue Crack Growth Behavior of Extruded Mg Alloy with Deformation Anisotropy Due to Stress Ratio Fluctuation.
    Masuda K; Ishihara S; Oguma N; Ishiguro M; Sakamoto Y
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.