These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37109814)

  • 1. Preparation of Flexible Calcium Carbonate by In Situ Carbonation of the Chitin Fibrils and Its Use for Producing High Loaded Paper.
    Kim SY; Jung SY; Seo YB; Han JS
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Calendering on the Properties of Paper Containing Flexible Calcium Carbonate with a Cellulose Nanofibril Core.
    Kim SY; Seo YB; Han JS
    ACS Omega; 2022 Oct; 7(39):35305-35315. PubMed ID: 36211077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.
    He M; Cho BU; Won JM
    Carbohydr Polym; 2016 Jan; 136():820-5. PubMed ID: 26572417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compaction of functionalized calcium carbonate, a porous and crystalline microparticulate material with a lamellar surface.
    Stirnimann T; Atria S; Schoelkopf J; Gane PA; Alles R; Huwyler J; Puchkov M
    Int J Pharm; 2014 May; 466(1-2):266-75. PubMed ID: 24631309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Deformable Calcium Carbonate for High Filler Paper.
    Kang DS; Han JS; Choi JS; Seo YB
    ACS Omega; 2020 Jun; 5(25):15202-15209. PubMed ID: 32637793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of In Situ Calcium Carbonate Process for Producing Papermaking Fillers from Lime Mud.
    Han JS; Kang DS; Seo YB
    ACS Omega; 2021 Feb; 6(5):3884-3890. PubMed ID: 33585767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic nanocellulose in papermaking - The key role as filler flocculant and strengthening agent.
    Lourenço AF; Gamelas JAF; Sarmento P; Ferreira PJT
    Carbohydr Polym; 2019 Nov; 224():115200. PubMed ID: 31472843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TEMPO-oxidized cellulose nanofibers.
    Isogai A; Saito T; Fukuzumi H
    Nanoscale; 2011 Jan; 3(1):71-85. PubMed ID: 20957280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of High-Purity Calcium Carbonate by Mineral Carbonation Using Concrete Sludge.
    Tanaka S; Takahashi K; Abe M; Noguchi M; Yamasaki A
    ACS Omega; 2022 Jun; 7(23):19600-19605. PubMed ID: 35721928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manufacture of Highly Transparent and Hazy Cellulose Nanofibril Films via Coating TEMPO-Oxidized Wood Fibers.
    Yang W; Jiao L; Liu W; Dai H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30654550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps.
    Afra E; Yousefi H; Hadilam MM; Nishino T
    Carbohydr Polym; 2013 Sep; 97(2):725-30. PubMed ID: 23911507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obtaining and Utilizing Cellulose Fibers with
    Fortuna ME; Harja M; Bucur D; Cimpeanu SM
    Materials (Basel); 2013 Oct; 6(10):4532-4544. PubMed ID: 28788346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Performance of Cationic Cellulose Derivatives as Calcium Carbonate Flocculant for Papermaking.
    Pedrosa JFS; Alves L; Neto CP; Rasteiro MG; Ferreira PJT
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellulose nanofibrils as filler for adhesives: effect on specific fracture energy of solid wood-adhesive bonds.
    Veigel S; Müller U; Keckes J; Obersriebnig M; Gindl-Altmutter W
    Cellulose (Lond); 2011; 18(5):1227-1237. PubMed ID: 26412949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exfoliating agent on rheological behavior of β-chitin fibrils in aqueous suspensions and on mechanical properties of poly(acrylic acid)/β-chitin composites.
    Bogdanova OI; Istomina AP; Glushkova NA; Belousov SI; Kuznetsov NM; Polyakov DK; Malakhov SN; Krasheninnikov SV; Bakirov AV; Kamyshinsky RA; Vasiliev AL; Streltsov DR; Chvalun SN
    Int J Biol Macromol; 2019 Oct; 139():161-169. PubMed ID: 31369786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix-induced pre-strain and mineralization-dependent interfibrillar shear transfer enable 3D fibrillar deformation in a biogenic armour.
    Wang Y; Zhang Y; Terrill NJ; Barbieri E; Pugno NM; Gupta HS
    Acta Biomater; 2019 Dec; 100():18-28. PubMed ID: 31563691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose Film Properties Tunable by Controlling Degree of Fibrillation of TEMPO-Oxidized Cellulose.
    Wakabayashi M; Fujisawa S; Saito T; Isogai A
    Front Chem; 2020; 8():37. PubMed ID: 32117870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filler modification for papermaking with starch/oleic acid complexes with the aid of calcium ions.
    Huang X; Shen J; Qian X
    Carbohydr Polym; 2013 Oct; 98(1):931-5. PubMed ID: 23987430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical performance of macrofibers of cellulose and chitin nanofibrils aligned by wet-stretching: a critical comparison.
    Torres-Rendon JG; Schacher FH; Ifuku S; Walther A
    Biomacromolecules; 2014 Jul; 15(7):2709-17. PubMed ID: 24947934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.