These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Surface and Interface Engineering for Nanocellulosic Advanced Materials. Yang X; Biswas SK; Han J; Tanpichai S; Li MC; Chen C; Zhu S; Das AK; Yano H Adv Mater; 2021 Jul; 33(28):e2002264. PubMed ID: 32902018 [TBL] [Abstract][Full Text] [Related]
4. Preparation, properties and applications of nanocellulosic materials. Mondal S Carbohydr Polym; 2017 May; 163():301-316. PubMed ID: 28267510 [TBL] [Abstract][Full Text] [Related]
5. Deep Trap Boosted Ultrahigh Triboelectric Charge Density in Nanofibrous Cellulose-Based Triboelectric Nanogenerators. Wang N; Yang D; Zhang W; Feng M; Li Z; Ye E; Loh XJ; Wang D ACS Appl Mater Interfaces; 2023 Jan; 15(1):997-1009. PubMed ID: 36542844 [TBL] [Abstract][Full Text] [Related]
6. Rational Design of Advanced Triboelectric Materials for Energy Harvesting and Emerging Applications. Duan Q; Peng W; He J; Zhang Z; Wu Z; Zhang Y; Wang S; Nie S Small Methods; 2023 Feb; 7(2):e2201251. PubMed ID: 36563114 [TBL] [Abstract][Full Text] [Related]
7. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review. Kaur M; Sharma P; Kumari S J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796 [TBL] [Abstract][Full Text] [Related]
8. Diatom Bio-Silica and Cellulose Nanofibril for Bio-Triboelectric Nanogenerators and Self-Powered Breath Monitoring Masks. Rajabi-Abhari A; Kim JN; Lee J; Tabassian R; Mahato M; Youn HJ; Lee H; Oh IK ACS Appl Mater Interfaces; 2021 Jan; 13(1):219-232. PubMed ID: 33375776 [TBL] [Abstract][Full Text] [Related]
9. Boosted output performance of nanocellulose-based triboelectric nanogenerators via device engineering and surface functionalization. Vatankhah E; Tadayon M; Ramakrishna S Carbohydr Polym; 2021 Aug; 266():118120. PubMed ID: 34044936 [TBL] [Abstract][Full Text] [Related]
10. Advanced Functional Materials Based on Nanocellulose for Pharmaceutical/Medical Applications. Nicu R; Ciolacu F; Ciolacu DE Pharmaceutics; 2021 Jul; 13(8):. PubMed ID: 34452086 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications. Gupta GK; Shukla P Front Chem; 2020; 8():601256. PubMed ID: 33425858 [TBL] [Abstract][Full Text] [Related]
12. Preparation of cellulose nanofibers from Miscanthus x. Giganteus by ammonium persulfate oxidation. Yang H; Zhang Y; Kato R; Rowan SJ Carbohydr Polym; 2019 May; 212():30-39. PubMed ID: 30832861 [TBL] [Abstract][Full Text] [Related]
13. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Liu C; Li B; Du H; Lv D; Zhang Y; Yu G; Mu X; Peng H Carbohydr Polym; 2016 Oct; 151():716-724. PubMed ID: 27474618 [TBL] [Abstract][Full Text] [Related]
14. Review of cellulose nanocrystals patents: preparation, composites and general applications. Durán N; Lemes AP; Seabra AB Recent Pat Nanotechnol; 2012 Jan; 6(1):16-28. PubMed ID: 21875405 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive Physical, Bio, and Chemical Sensors Derived from 1-, 2-, and 3-D Nanocellulosic Materials. Dai L; Wang Y; Zou X; Chen Z; Liu H; Ni Y Small; 2020 Apr; 16(13):e1906567. PubMed ID: 32049432 [TBL] [Abstract][Full Text] [Related]
17. Polyion complex hydrogels from chemically modified cellulose nanofibrils: Structure-function relationship and potential for controlled and pH-responsive release of doxorubicin. Hujaya SD; Lorite GS; Vainio SJ; Liimatainen H Acta Biomater; 2018 Jul; 75():346-357. PubMed ID: 29885527 [TBL] [Abstract][Full Text] [Related]
18. Recent advancement in isolation, processing, characterization and applications of emerging nanocellulose: A review. Noremylia MB; Hassan MZ; Ismail Z Int J Biol Macromol; 2022 May; 206():954-976. PubMed ID: 35304199 [TBL] [Abstract][Full Text] [Related]
19. Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. Kwon G; Lee K; Kim D; Jeon Y; Kim UJ; You J J Hazard Mater; 2020 Nov; 398():123100. PubMed ID: 32768841 [TBL] [Abstract][Full Text] [Related]
20. Strong, self-standing oxygen barrier films from nanocelluloses modified with regioselective oxidative treatments. Sirviö JA; Kolehmainen A; Visanko M; Liimatainen H; Niinimäki J; Hormi OE ACS Appl Mater Interfaces; 2014 Aug; 6(16):14384-90. PubMed ID: 25089516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]