These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Hurtado A; Cano-Vicent A; Tuñón-Molina A; Aparicio-Collado JL; Salesa B; I Serra RS; Serrano-Aroca Á Int J Biol Macromol; 2022 Oct; 219():694-708. PubMed ID: 35961550 [TBL] [Abstract][Full Text] [Related]
5. Construction and Evaluation of Alginate Dialdehyde Grafted RGD Derivatives/Polyvinyl Alcohol/Cellulose Nanocrystals IPN Composite Hydrogels. Wang H; Yin R; Chen X; Wu T; Bu Y; Yan H; Lin Q Molecules; 2023 Sep; 28(18):. PubMed ID: 37764467 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of thermo- and pH-sensitive poly(vinyl alcohol)/poly(N, N-diethylacrylamide-co-itaconic acid) semi-IPN hydrogels. Zhang N; Shen Y; Li X; Cai S; Liu M Biomed Mater; 2012 Jun; 7(3):035014. PubMed ID: 22493167 [TBL] [Abstract][Full Text] [Related]
7. Temperature-sensitivity and cell biocompatibility of freeze-dried nanocomposite hydrogels incorporated with biodegradable PHBV. Zhang Q; Chen L; Dong Y; Lu S Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1616-22. PubMed ID: 23827615 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. Peng F; Guan Y; Zhang B; Bian J; Ren JL; Yao CL; Sun RC Int J Biol Macromol; 2014 Apr; 65():564-72. PubMed ID: 24530334 [TBL] [Abstract][Full Text] [Related]
12. Development of hydrogels with thermal-healing properties using a network of polyvinyl alcohol and boron nitride composites. Chou HY; Tsai HC Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111364. PubMed ID: 33254983 [TBL] [Abstract][Full Text] [Related]
13. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Jo H; Sim M; Kim S; Yang S; Yoo Y; Park JH; Yoon TH; Kim MG; Lee JY Acta Biomater; 2017 Jan; 48():100-109. PubMed ID: 27989919 [TBL] [Abstract][Full Text] [Related]
14. Graphene oxide nanosheets versus carbon nanofibers: Enhancement of physical and biological properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) films for biomedical applications. Rivera-Briso AL; Aachmann FL; Moreno-Manzano V; Serrano-Aroca Á Int J Biol Macromol; 2020 Jan; 143():1000-1008. PubMed ID: 31734372 [TBL] [Abstract][Full Text] [Related]
17. A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering. Xiang C; Zhang X; Zhang J; Chen W; Li X; Wei X; Li P J Funct Biomater; 2022 Sep; 13(3):. PubMed ID: 36135575 [TBL] [Abstract][Full Text] [Related]
18. Interpenetrating polymer networks in polyvinyl alcohol/cellulose nanocrystals hydrogels to develop absorbent materials. Bai H; Li Z; Zhang S; Wang W; Dong W Carbohydr Polym; 2018 Nov; 200():468-476. PubMed ID: 30177188 [TBL] [Abstract][Full Text] [Related]
19. Sodium alginate/polyvinyl alcohol semi-interpenetrating hydrogels reinforced with PEG-grafted-graphene oxide. Mehrjou A; Hadaeghnia M; Ehsani Namin P; Ghasemi I Int J Biol Macromol; 2024 Apr; 263(Pt 2):130258. PubMed ID: 38423903 [TBL] [Abstract][Full Text] [Related]
20. Biocompatible Hydroxylated Boron Nitride Nanosheets/Poly(vinyl alcohol) Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses. Jing L; Li H; Tay RY; Sun B; Tsang SH; Cometto O; Lin J; Teo EHT; Tok AIY ACS Nano; 2017 Apr; 11(4):3742-3751. PubMed ID: 28345866 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]