These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37109987)

  • 1. Multi-Scale Topology Optimization of Femoral Stem Structure Subject to Stress Shielding Reduce.
    Xiao Z; Wu L; Wu W; Tang R; Dai J; Zhu D
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology Optimisation for Compliant Hip Implant Design and Reduced Strain Shielding.
    Tan N; van Arkel RJ
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical study of failure mechanisms in the cemented resurfaced femur: effects of interface characteristics and bone remodelling.
    Pal B; Gupta S; New AM
    Proc Inst Mech Eng H; 2009 May; 223(4):471-84. PubMed ID: 19499837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical Properties of Bionic Collum Femoris Preserving Hip Prosthesis: A Finite Element Analysis.
    Zhang X; Wang Y; Zhang L; Yu K; Ding Z; Zhang Y; Chen X; Xiong C; Ji Y; Zhang D; Ma X
    Orthop Surg; 2023 Apr; 15(4):1126-1135. PubMed ID: 36797648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of 3D-printed prostheses for reconstruction of periacetabular bone tumors using topology optimization.
    Zhu J; Hu J; Zhu K; Ma X; Wang Y; Xu E; Huang Z; Zhu Y; Zhang C
    Front Bioeng Biotechnol; 2023; 11():1289363. PubMed ID: 38116196
    [No Abstract]   [Full Text] [Related]  

  • 6. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.
    Arabnejad S; Johnston B; Tanzer M; Pasini D
    J Orthop Res; 2017 Aug; 35(8):1774-1783. PubMed ID: 27664796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of cementless femoral stems based on mid- and long-term radiological evaluation.
    Matsuyama K; Ishidou Y; Guo YM; Kakoi H; Setoguchi T; Nagano S; Kawamura I; Maeda S; Komiya S
    BMC Musculoskelet Disord; 2016 Sep; 17(1):397. PubMed ID: 27642748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new design of cemented stem using functionally graded materials (FGM).
    Hedia HS; Aldousari SM; Abdellatif AK; Fouda N
    Biomed Mater Eng; 2014; 24(3):1575-88. PubMed ID: 24840196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis.
    Naghavi SA; Tamaddon M; Garcia-Souto P; Moazen M; Taylor S; Hua J; Liu C
    Front Bioeng Biotechnol; 2023; 11():1092361. PubMed ID: 36777247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of periprosthetic stress-shielding to load and the bone density-modulus relationship in subject-specific finite element models.
    Weinans H; Sumner DR; Igloria R; Natarajan RN
    J Biomech; 2000 Jul; 33(7):809-17. PubMed ID: 10831755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selection Methodology of Femoral Stems According to the Cross Section and the Maximum Stresses.
    López Galiano IC; Juha M; Ortiz JG; Echeverry-Mejia J
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34773458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capability of auxetic femoral stems to reduce stress shielding after total hip arthroplasty.
    Liu B; Wang H; Zhang M; Li J; Zhang N; Luan Y; Fang C; Cheng CK
    J Orthop Translat; 2023 Jan; 38():220-228. PubMed ID: 36474854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress and strain distribution in femoral heads for hip resurfacing arthroplasty with different materials: A finite element analysis.
    Vogel D; Wehmeyer M; Kebbach M; Heyer H; Bader R
    J Mech Behav Biomed Mater; 2021 Jan; 113():104115. PubMed ID: 33189013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Finite element analysis of different diameter prosthesis ball head in artificial femoral head replacement].
    Wang XB; Panf QJ; Yu X
    Zhongguo Gu Shang; 2020 Jun; 33(6):558-63. PubMed ID: 32573163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the design and properties of porous femoral stems with adjustable stiffness gradient.
    Wang S; Zhou X; Liu L; Shi Z; Hao Y
    Med Eng Phys; 2020 Jul; 81():30-38. PubMed ID: 32505662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate.
    Bagheri ZS; Tavakkoli Avval P; Bougherara H; Aziz MS; Schemitsch EH; Zdero R
    J Biomech Eng; 2014 Sep; 136(9):091002. PubMed ID: 24828985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How stiffness and distal interlocking of revision hip stems influence the femoral cortical strain pattern.
    Ellenrieder M; Steinhauser E; Bader R; Mittelmeier W
    J Orthop Sci; 2012 May; 17(3):205-12. PubMed ID: 22406866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Femoral Stems With Porous Lattice Structures: A Review.
    Liu B; Wang H; Zhang N; Zhang M; Cheng CK
    Front Bioeng Biotechnol; 2021; 9():772539. PubMed ID: 34869289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and in vitro validation of a simplified numerical model for the design of a biomimetic femoral stem.
    Jetté B; Brailovski V; Simoneau C; Dumas M; Terriault P
    J Mech Behav Biomed Mater; 2018 Jan; 77():539-550. PubMed ID: 29069636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.