BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37110496)

  • 1. Characterization of a Riboflavin-Producing Mutant of
    Xu F; Liu C; Xia M; Li S; Tu R; Wang S; Jin H; Zhang D
    Microorganisms; 2023 Apr; 11(4):. PubMed ID: 37110496
    [No Abstract]   [Full Text] [Related]  

  • 2. Finding the Needle in the Haystack-the Use of Microfluidic Droplet Technology to Identify Vitamin-Secreting Lactic Acid Bacteria.
    Chen J; Vestergaard M; Jensen TG; Shen J; Dufva M; Solem C; Jensen PR
    mBio; 2017 May; 8(3):. PubMed ID: 28559484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh-throughput screening of industrial enzyme-producing strains by droplet-based microfluidic system.
    Yuan H; Tu R; Tong X; Lin Y; Zhang Y; Wang Q
    J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 35259275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased Production of Riboflavin by Coordinated Expression of Multiple Genes in Operons in
    You J; Du Y; Pan X; Zhang X; Yang T; Rao Z
    ACS Synth Biol; 2022 May; 11(5):1801-1810. PubMed ID: 35467340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discrimination of riboflavin producing Bacillus subtilis strains based on their fed-batch process performances on a millilitre scale.
    Vester A; Hans M; Hohmann HP; Weuster-Botz D
    Appl Microbiol Biotechnol; 2009 Aug; 84(1):71-6. PubMed ID: 19319520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving riboflavin production by modifying related metabolic pathways in Bacillus subtilis.
    Xu J; Wang C; Ban R
    Lett Appl Microbiol; 2022 Jan; 74(1):78-83. PubMed ID: 34704264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis.
    Wang G; Shi T; Chen T; Wang X; Wang Y; Liu D; Guo J; Fu J; Feng L; Wang Z; Zhao X
    Metab Eng; 2018 Jul; 48():138-149. PubMed ID: 29864583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Bacillus subtilis for enhancing riboflavin production by alleviating dissolved oxygen limitation.
    You J; Yang C; Pan X; Hu M; Du Y; Osire T; Yang T; Rao Z
    Bioresour Technol; 2021 Aug; 333():125228. PubMed ID: 33957462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production].
    Ying M; Ban R
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):23-7. PubMed ID: 16579459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of riboflavin production by deregulating gluconeogenesis in Bacillus subtilis.
    Wang G; Bai L; Wang Z; Shi T; Chen T; Zhao X
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1893-900. PubMed ID: 24477882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Fusion of Bacillus subtilis and Bacillus licheniformis protoplasts. The mapping of the mutations leading to the supersynthesis of riboflavin in interspecies hybrids].
    Kukanova AIa; Iaroslavtseva NG; Zvenigorodskiĭ VI; Zhdanov VG
    Antibiot Med Biotekhnol; 1986 Mar; 31(3):167-70. PubMed ID: 3087272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Droplet-based microfluidic platform for detecting agonistic peptides that are self-secreted by yeast expressing a G-protein-coupled receptor.
    Asama R; Liu CJS; Tominaga M; Cheng YR; Nakamura Y; Kondo A; Wang HY; Ishii J
    Microb Cell Fact; 2024 Apr; 23(1):104. PubMed ID: 38594681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains.
    Wang J; Wang W; Wang H; Yuan F; Xu Z; Yang K; Li Z; Chen Y; Fan K
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4455-4465. PubMed ID: 30968162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring and external control of pH in microfluidic droplets during microbial culturing.
    Tovar M; Mahler L; Buchheim S; Roth M; Rosenbaum MA
    Microb Cell Fact; 2020 Jan; 19(1):16. PubMed ID: 31996234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of Bacillus subtilis transposon mutants with altered riboflavin production.
    Tännler S; Zamboni N; Kiraly C; Aymerich S; Sauer U
    Metab Eng; 2008 Sep; 10(5):216-26. PubMed ID: 18582593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fed-batch production of D-ribose from sugar mixtures by transketolase-deficient Bacillus subtilis SPK1.
    Park YC; Kim SG; Park K; Lee KH; Seo JH
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):297-302. PubMed ID: 15375635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract]