These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3711076)

  • 1. Structural basis of human erythrocyte glucose transporter function in reconstituted vesicles.
    Chin JJ; Jung EK; Jung CY
    J Biol Chem; 1986 Jun; 261(16):7101-4. PubMed ID: 3711076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oriented secondary structure in integral membrane proteins. I. Circular dichroism and infrared spectroscopy of cytochrome oxidase in multilamellar films.
    Bazzi MD; Woody RW
    Biophys J; 1985 Dec; 48(6):957-66. PubMed ID: 3004614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of human erythrocyte glucose transporter function in proteoliposome vesicles: circular dichroism measurements.
    Chin JJ; Jung EK; Chen V; Jung CY
    Proc Natl Acad Sci U S A; 1987 Jun; 84(12):4113-6. PubMed ID: 3473495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-glucose binding increases secondary structure of human erythrocyte monosaccharide transport protein.
    Pawagi AB; Deber CM
    Biochem Biophys Res Commun; 1987 Jun; 145(3):1087-91. PubMed ID: 3606595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A spectroscopic study of rhodopsin alpha-helix orientation.
    Rothschild KJ; Sanches R; Hsiao TL; Clark NA
    Biophys J; 1980 Jul; 31(1):53-64. PubMed ID: 7272433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of circular dichroism spectra of oriented protein-lipid complexes: toward a general application.
    de Jongh HH; Goormaghtigh E; Killian JA
    Biochemistry; 1994 Dec; 33(48):14521-8. PubMed ID: 7981213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared spectroscopic study of the structure and conformational changes of the human erythrocyte glucose transporter.
    Alvarez J; Lee DC; Baldwin SA; Chapman D
    J Biol Chem; 1987 Mar; 262(8):3502-9. PubMed ID: 3818652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The orientation of beta-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation.
    Nabedryk E; Garavito RM; Breton J
    Biophys J; 1988 May; 53(5):671-6. PubMed ID: 2455547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of rhodopsin alpha-helices in in retinal rod outer segment membranes studied by infrared linear dichroism.
    Michel-Villaz M; Saibil HR; Chabre M
    Proc Natl Acad Sci U S A; 1979 Sep; 76(9):4405-8. PubMed ID: 291972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orientation of gramicidin A transmembrane channel. Infrared dichroism study of gramicidin in vesicles.
    Nabedryk E; Gingold MP; Breton J
    Biophys J; 1982 Jun; 38(3):243-9. PubMed ID: 6179549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino-terminal peptide of HIV-1 glycoprotein 41 interacts with human erythrocyte membranes: peptide conformation, orientation and aggregation.
    Gordon LM; Curtain CC; Zhong YC; Kirkpatrick A; Mobley PW; Waring AJ
    Biochim Biophys Acta; 1992 Aug; 1139(4):257-74. PubMed ID: 1355364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of the absorption and circular dichroic spectra of oriented purple membrane films.
    Muccio DD; Cassim JY
    Biophys J; 1979 Jun; 26(3):427-40. PubMed ID: 262427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarized infrared spectroscopy of oriented purple membrane.
    Rothschild KJ; Clark NA
    Biophys J; 1979 Mar; 25(3):473-87. PubMed ID: 262400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural model of the phospholamban ion channel complex in phospholipid membranes.
    Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO
    J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. vpu transmembrane peptide structure obtained by site-specific fourier transform infrared dichroism and global molecular dynamics searching.
    Kukol A; Arkin IT
    Biophys J; 1999 Sep; 77(3):1594-601. PubMed ID: 10465770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human erythrocyte hexose transporter activity is governed by bilayer lipid composition in reconstituted vesicles.
    Carruthers A; Melchior DL
    Biochemistry; 1984 Dec; 23(26):6901-11. PubMed ID: 6543323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FTIR spectroscopy of secondary-structure reorientation of melibiose permease modulated by substrate binding.
    Dave N; Lórenz-Fonfría VA; Leblanc G; Padrós E
    Biophys J; 2008 May; 94(9):3659-70. PubMed ID: 18024501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1.
    Rath P; Bousché O; Merrill AR; Cramer WA; Rothschild KJ
    Biophys J; 1991 Mar; 59(3):516-22. PubMed ID: 1710937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.