These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37110826)

  • 1. Research Progress on Propylene Preparation by Propane Dehydrogenation.
    Zuo C; Su Q
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation.
    Chen S; Luo R; Zhao ZJ; Pei C; Xu Y; Lu Z; Zhao C; Song H; Gong J
    Nat Commun; 2023 May; 14(1):2620. PubMed ID: 37147344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling acid catalysis and selective oxidation over MoO
    Wang X; Pei C; Zhao ZJ; Chen S; Li X; Sun J; Song H; Sun G; Wang W; Chang X; Zhang X; Gong J
    Nat Commun; 2023 Apr; 14(1):2039. PubMed ID: 37041149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research progress of CO
    Wang ZY; He ZH; Li LY; Yang SY; He MX; Sun YC; Wang K; Chen JG; Liu ZT
    Rare Metals; 2022; 41(7):2129-2152. PubMed ID: 35291268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coverage-Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Pei C; Chang X; Zhao ZJ; Mu R; Xu Y; Gong J
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22072-22079. PubMed ID: 32833255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen-Doped Graphene Monolith Catalysts for Oxidative Dehydrogenation of Propane.
    Liu W; Cao T; Dai X; Bai Y; Lu X; Li F; Qi W
    Front Chem; 2021; 9():759936. PubMed ID: 34722461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation.
    Nakaya Y; Furukawa S
    Chempluschem; 2022 Feb; 87(4):e202100560. PubMed ID: 35194957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically Dispersed Co
    Wu L; Ren Z; He Y; Yang M; Yu Y; Liu Y; Tan L; Tang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48934-48948. PubMed ID: 34615351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical insights into non-oxidative propane dehydrogenation over Fe
    Wang P; Senftle TP
    Phys Chem Chem Phys; 2021 Jan; 23(2):1401-1413. PubMed ID: 33393543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental and ab initio investigations of H2S-assisted propane oxidative dehydrogenation reactions.
    Premji ZA; Lo JM; Clark PD
    J Phys Chem A; 2014 Mar; 118(9):1541-56. PubMed ID: 24524187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced design and development of catalysts in propane dehydrogenation.
    Yang F; Zhang J; Shi Z; Chen J; Wang G; He J; Zhao J; Zhuo R; Wang R
    Nanoscale; 2022 Jul; 14(28):9963-9988. PubMed ID: 35815671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Study on performance of Ni3 V2O8 catalyst and analysis of X-ray photoelectron spectroscopy].
    Xu AJ; Zhaorigetu B; Jia ML; Lin Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2134-8. PubMed ID: 18306814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane.
    Dai Y; Gao X; Wang Q; Wan X; Zhou C; Yang Y
    Chem Soc Rev; 2021 May; 50(9):5590-5630. PubMed ID: 33690780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic Catalysts for Oxidative Dehydrogenation of Propane Using CO
    Xing F; Furukawa S
    Chemistry; 2023 Jan; 29(3):e202202173. PubMed ID: 36184570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Density Lewis Acid Sites in Porous Single-Crystalline Monoliths to Enhance Propane Dehydrogenation at Reduced Temperatures.
    Lin G; Su Y; Duan X; Xie K
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9311-9315. PubMed ID: 33569871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.