These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 3711085)

  • 21. Studies on fluorescence polarization of 1-acyl-2-cis- or trans-parinaroyl sn-3-glycerophosphorylcholines in model systems and microsomal membranes.
    Pugh EL; Kates M; Szabo AG
    Chem Phys Lipids; 1982 Mar; 30(1):55-69. PubMed ID: 7083418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid.
    Nyholm TK; Lindroos D; Westerlund B; Slotte JP
    Langmuir; 2011 Jul; 27(13):8339-50. PubMed ID: 21627141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of sphingomyelins and phosphatidylcholines with fluorescent dehydroergosterol.
    Schroeder F; Nemecz G
    Biochemistry; 1989 Jul; 28(14):5992-6000. PubMed ID: 2775747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiolipin-cholesterol interactions in the liquid-crystalline phase: a steady-state and time-resolved fluorescence anisotropy study with cis- and trans-parinaric acids as probes.
    Gallay J; Vincent M
    Biochemistry; 1986 May; 25(9):2650-6. PubMed ID: 3718970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of the fluorescent probe alpha-parinaric acid to determine the physical state of the intracytoplasmic membranes of the photosynthetic bacterium, Rhodopseudomonas sphaeroides.
    Fraley RT; Jameson DM; Kaplan S
    Biochim Biophys Acta; 1978 Jul; 511(1):52-60. PubMed ID: 307403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study.
    Fodor E; Jones RH; Buda C; Kitajka K; Dey I; Farkas T
    Lipids; 1995 Dec; 30(12):1119-26. PubMed ID: 8614302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steady-state fluorescence polarization study of structurally defined phospholipids from liver mitochondria of rats fed elaidic acid.
    Wolff RL; Entressangles B
    Biochim Biophys Acta; 1994 Mar; 1211(2):198-206. PubMed ID: 8117747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Correlation of side chain mobility with cholesterol retention by phospholipid vesicles.
    Jacobsohn MK; Esfahani M; Jacobsohn GM
    Lipids; 1986 Nov; 21(11):691-6. PubMed ID: 3796234
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation.
    Xu X; London E
    Biochemistry; 2000 Feb; 39(5):843-9. PubMed ID: 10653627
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conjugated polyene fatty acids as fluorescent membrane probes: model system studies.
    Sklar LA; Hudson BS
    J Supramol Struct; 1976; 4(4):449-65. PubMed ID: 778493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid acyl chain-dependent effects of sterols in Acholeplasma laidlawii membranes.
    Rilfors L; Wikander G; Wieslander A
    J Bacteriol; 1987 Feb; 169(2):830-8. PubMed ID: 3027049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fatty acid composition and dynamics of phospholipids from hake (Merluccius hubbsi) spinal cord and brain and sea bass (Acanthustius brasilianus) brain.
    Ayala S; Castuma CE; Brenner RR
    Biochem Int; 1991 Jan; 23(1):163-74. PubMed ID: 1863270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of Acyl Chain Mismatch on the Formation and Properties of Sphingomyelin-Cholesterol Domains.
    Nyholm TKM; Engberg O; Hautala V; Tsuchikawa H; Lin KL; Murata M; Slotte JP
    Biophys J; 2019 Nov; 117(9):1577-1588. PubMed ID: 31610877
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescence anisotropy measurements of lipid order in plasma membranes and lipid rafts from RBL-2H3 mast cells.
    Gidwani A; Holowka D; Baird B
    Biochemistry; 2001 Oct; 40(41):12422-9. PubMed ID: 11591163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phospholipid lateral phase separation and the partition of cis-parinaric acid and trans-parinaric acid among aqueous, solid lipid, and fluid lipid phases.
    Sklar LA; Miljanich GP; Dratz EA
    Biochemistry; 1979 May; 18(9):1707-16. PubMed ID: 435480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of steady-state fluorescence polarization and urea permeability of phosphatidylcholine and phosphatidylsulfocholine liposomes as a function of sterol structure.
    Pugh EL; Bittman R; Fugler L; Kates M
    Chem Phys Lipids; 1989 Apr; 50(1):43-50. PubMed ID: 2758524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sterol and phospholipid acyl chain alterations in Saccharomyces cerevisiae secretion mutants as a function of temperature stress.
    Low C; Parks LW
    Lipids; 1987 Oct; 22(10):715-20. PubMed ID: 3323755
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The study on the interaction between phytosterols and phospholipids in model membranes.
    Hac-Wydro K; Wydro P; Jagoda A; Kapusta J
    Chem Phys Lipids; 2007 Nov; 150(1):22-34. PubMed ID: 17632093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subzero temperature study of the inner mitochondrial membrane and related phospholipid membrane systems with the fluorescent probe, trans-parinaric acid.
    Waring AJ; Glatz P; Vanderkooi JM
    Biochim Biophys Acta; 1979 Nov; 557(2):391-8. PubMed ID: 497190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How phospholipid-cholesterol interactions modulate lipid lateral diffusion, as revealed by fluorescence correlation spectroscopy.
    Kahya N; Schwille P
    J Fluoresc; 2006 Sep; 16(5):671-8. PubMed ID: 17013676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.