These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37110880)
1. Effect of Hydrothermal and Vapor Thermal Treatments on Apatite Inductivity of Titanate Nanotubes on Anodized Ti-5Nb-5Mo Surface. Hsieh KH; Hsu HC; Wu SC; Shih YC; Yang HW; Ho WF Nanomaterials (Basel); 2023 Apr; 13(8):. PubMed ID: 37110880 [TBL] [Abstract][Full Text] [Related]
2. Effect of different post-treatments on the bioactivity of alkali-treated Ti-5Si alloy. Hsu HC; Wu SC; Hsu SK; Liao YH; Ho WF Biomed Mater Eng; 2017; 28(5):503-514. PubMed ID: 28854492 [TBL] [Abstract][Full Text] [Related]
3. Surface modification of a Ti-7.5Mo alloy using NaOH treatment and Bioglass coating. Ho WF; Lai CH; Hsu HC; Wu SC J Mater Sci Mater Med; 2010 May; 21(5):1479-88. PubMed ID: 20069344 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and characterization of porous Ti-7.5Mo alloy scaffolds for biomedical applications. Hsu HC; Hsu SK; Tsou HK; Wu SC; Lai TH; Ho WF J Mater Sci Mater Med; 2013 Mar; 24(3):645-57. PubMed ID: 23314686 [TBL] [Abstract][Full Text] [Related]
5. Thermal stability and in vitro bioactivity of Ti-Al-V-O nanostructures fabricated on Ti6Al4V alloy. Li Y; Ding D; Ning C; Bai S; Huang L; Li M; Mao D Nanotechnology; 2009 Feb; 20(6):065708. PubMed ID: 19417402 [TBL] [Abstract][Full Text] [Related]
6. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V. Butt A; Hamlekhan A; Patel S; Royhman D; Sukotjo C; Mathew MT; Shokuhfar T; Takoudis C J Oral Implantol; 2015 Oct; 41(5):523-31. PubMed ID: 24628292 [TBL] [Abstract][Full Text] [Related]
7. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium. Amin Yavari S; Chai YC; Böttger AJ; Wauthle R; Schrooten J; Weinans H; Zadpoor AA Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():132-8. PubMed ID: 25842117 [TBL] [Abstract][Full Text] [Related]
8. Development of hafnium metal and titanium-hafnium alloys having apatite-forming ability by chemical surface modification. Miyazaki T; Sueoka M; Shirosaki Y; Shinozaki N; Shiraishi T J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2519-2523. PubMed ID: 29274252 [TBL] [Abstract][Full Text] [Related]
9. Effect of anodization and alkali-heat treatment on the bioactivity of titanium implant material (an in vitro study). Abdelrahim RA; Badr NA; Baroudi K J Int Soc Prev Community Dent; 2016; 6(3):189-95. PubMed ID: 27382532 [TBL] [Abstract][Full Text] [Related]
10. Surface nanotopography-induced favorable modulation of bioactivity and osteoconductive potential of anodized 3D printed Ti-6Al-4V alloy mesh structure. Nune KC; Misra R; Gai X; Li SJ; Hao YL J Biomater Appl; 2018 Mar; 32(8):1032-1048. PubMed ID: 29249195 [TBL] [Abstract][Full Text] [Related]
11. Nanomechanical properties, wear resistance and in-vitro characterization of Ta Sarraf M; Razak BA; Nasiri-Tabrizi B; Dabbagh A; Kasim NHA; Basirun WJ; Bin Sulaiman E J Mech Behav Biomed Mater; 2017 Feb; 66():159-171. PubMed ID: 27886563 [TBL] [Abstract][Full Text] [Related]
12. Non-Isothermal Oxidation Behaviors and Mechanisms of Ti-Al Intermetallic Compounds. Ouyang P; Mi G; Li P; He L; Cao J; Huang X Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31262063 [TBL] [Abstract][Full Text] [Related]
13. In vitro osteoblast response to anodized titanium and anodized titanium followed by hydrothermal treatment. Rodriguez R; Kim K; Ong JL J Biomed Mater Res A; 2003 Jun; 65(3):352-8. PubMed ID: 12746882 [TBL] [Abstract][Full Text] [Related]
14. Bioactive surface modification of Ti-29Nb-13Ta-4.6Zr alloy through alkali solution treatments. Takematsu E; Katsumata K; Okada K; Niinomi M; Matsushita N Mater Sci Eng C Mater Biol Appl; 2016 May; 62():662-7. PubMed ID: 26952470 [TBL] [Abstract][Full Text] [Related]
15. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment. Kim HM; Takadama H; Kokubo T; Nishiguchi S; Nakamura T Biomaterials; 2000 Feb; 21(4):353-8. PubMed ID: 10656316 [TBL] [Abstract][Full Text] [Related]
16. Microstructure and Electrochemical Behavior of TiO₂ Nanotubes Coated on Titanium-Based Substrate Before and After Thermal Treatment. Losertová M; Štefek O; Galajda M; Konečná K; Martynková GS; Barabaszová KČ J Nanosci Nanotechnol; 2019 May; 19(5):2989-2996. PubMed ID: 30501810 [TBL] [Abstract][Full Text] [Related]
17. Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium. Miyazaki T; Sasaki T; Shirosaki Y; Yokoyama K; Kawashita M Biomed Mater Eng; 2018; 29(1):109-118. PubMed ID: 29254077 [TBL] [Abstract][Full Text] [Related]
19. Effects of heat treatment on the bioactivity of surface-modified titanium in calcium solution. Sultana R; Hamada K; Ichikawa T; Asaoka K Biomed Mater Eng; 2009; 19(2-3):193-204. PubMed ID: 19581714 [TBL] [Abstract][Full Text] [Related]
20. Impact of Surface Potential on Apatite Formation in Ti Alloys Subjected to Acid and Heat Treatments. Yamaguchi S; Hashimoto H; Nakai R; Takadama H Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28946646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]