BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 37110890)

  • 21. Chemically bonded multi-nanolayer inorganic aerogel with a record-low thermal conductivity in a vacuum.
    Yu H; Li M; Deng Y; Fu S; Guo J; Zhao H; Zhang J; Dang S; Zhang P; Zhou J; Liu D; Wang D; Zhang C; Hao M; Xu X
    Natl Sci Rev; 2023 Oct; 10(10):nwad129. PubMed ID: 37671327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fiber Sedimentation and Layer-By-Layer Assembly Strategy for Designing Biomimetic Quasi-Ordered Mullite Fiber Aerogels as Extreme Conditions Thermal Insulators.
    Li W; Jiang Y; Liu H; Wang C; Zhou X; Jiang S; Mu Y; Wang L; He X; Li M; He F
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46010-46021. PubMed ID: 37737705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators.
    Yan Y; Ge F; Qin Y; Ruan M; Guo Z; He C; Wang Z
    Carbohydr Polym; 2020 Nov; 248():116755. PubMed ID: 32919557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal Insulation Performance of SiC-Doped Silica Aerogels under Large Temperature and Air Pressure Differences.
    Zhang SN; Pang HQ; Fan TH; Ye Q; Cai QL; Wu X
    Gels; 2022 May; 8(5):. PubMed ID: 35621618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles.
    Wang Z; Yang H; Li Y; Zheng X
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15726-15736. PubMed ID: 32167746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrahigh-strength carbon aerogels for high temperature thermal insulation.
    Wu K; Zhou Q; Cao J; Qian Z; Niu B; Long D
    J Colloid Interface Sci; 2022 Mar; 609():667-675. PubMed ID: 34823850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions.
    Guo J; Fu S; Deng Y; Xu X; Laima S; Liu D; Zhang P; Zhou J; Zhao H; Yu H; Dang S; Zhang J; Zhao Y; Li H; Duan X
    Nature; 2022 Jun; 606(7916):909-916. PubMed ID: 35768591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Implementing an Air Suction Effect Induction Strategy to Create Super Thermally Insulating and Superelastic SiC Aerogels.
    Yan M; Zhang H; Fu Y; Pan Y; Lun Z; Zhang Z; He P; Cheng X
    Small; 2022 May; 18(19):e2201039. PubMed ID: 35419970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Formation of the TiCN Phase in SiBCN Ceramic Aerogels Enabling Superior Thermal and Structural Stability up to 1800 °C.
    Sun X; Zhu W; Wang H; Yan X; Su D
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12221-12231. PubMed ID: 36825905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Double-Network MK Resin-Modified Silica Aerogels for High-Temperature Thermal Insulation.
    Xu L; Zhu W; Chen Z; Su D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):44238-44247. PubMed ID: 37672731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advanced Fabrication and Multi-Properties of Aluminum-Based Aerogels from Aluminum Waste for Thermal Insulation and Oil Absorption Applications.
    Goh XY; Ong RH; Nguyen PTT; Bai T; Aw D; Li T; Nguyen LT; Duong HM
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale Interpenetrated/Interconnected Network Design Confers All-Carbon Aerogels with Unprecedented Thermomechanical Properties for Thermal Insulation under Extreme Environments.
    Chang X; Wu F; Cheng X; Zhang H; He L; Li W; Yin X; Yu J; Liu YT; Ding B
    Adv Mater; 2024 Feb; 36(7):e2308519. PubMed ID: 37913824
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly Stretchable, Crack-Insensitive and Compressible Ceramic Aerogel.
    Su L; Wang H; Jia S; Dai S; Niu M; Ren J; Lu X; Cai Z; Lu D; Li M; Xu L; Guo SW; Zhuang L; Peng K
    ACS Nano; 2021 Nov; 15(11):18354-18362. PubMed ID: 34766747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superelastic and superflexible cellulose aerogels for thermal insulation and oil/water separation.
    Ke W; Ge F; Shi X; Zhang Y; Wu T; Zhu X; Cheng Y; Shi Y; Wang Z; Yuan L; Yan Y
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129245. PubMed ID: 38191109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of the SiC/HfC Composite Aerogel with Ultra-Low Thermal Conductivity and Excellent Compressive Strength.
    Wang W; You Q; Wu Z; Cui S; Shen W
    Gels; 2024 Apr; 10(5):. PubMed ID: 38786208
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiphase Symbiotic Engineered Elastic Ceramic-Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments.
    Chang X; Yang Y; Cheng X; Yin X; Yu J; Liu YT; Ding B
    Adv Mater; 2024 Jun; ():e2406055. PubMed ID: 38829267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. "Rigid-Flexible" Anisotropic Biomass-Derived Aerogels with Superior Mechanical Properties for Oil Recovery and Thermal Insulation.
    Tan Z; Yoo CG; Yang D; Liu W; Qiu X; Zheng D
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):42080-42093. PubMed ID: 37624365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation.
    Lan X; Hou Y; Dong X; Yang Z; Thai BQ; Yang Y; Zhai W
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15360-15369. PubMed ID: 35315653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiscale nanocelluloses hybrid aerogels for thermal insulation: The study on mechanical and thermal properties.
    Jiang S; Zhang M; Jiang W; Xu Q; Yu J; Liu L; Liu L
    Carbohydr Polym; 2020 Nov; 247():116701. PubMed ID: 32829829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel.
    Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.