These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3711127)

  • 1. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--I. Basic concepts, description of the model, analysis of a one-link system movement.
    Aleshinsky SY
    J Biomech; 1986; 19(4):287-93. PubMed ID: 3711127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--II. Movement of the multi-link chain model.
    Aleshinsky SY
    J Biomech; 1986; 19(4):295-300. PubMed ID: 3711128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--V. The mechanical energy expenditure reduction during motion of the multi-link system.
    Aleshinsky SY
    J Biomech; 1986; 19(4):311-5. PubMed ID: 3711131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--III. Mechanical energy expenditure reduction during one link motion.
    Aleshinsky SY
    J Biomech; 1986; 19(4):301-6. PubMed ID: 3711129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--IV. Criticism of the concept of 'energy transfers within and between links'.
    Aleshinsky SY
    J Biomech; 1986; 19(4):307-9. PubMed ID: 3711130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure.
    Cavagna GA; Heglund NC; Taylor CR
    Am J Physiol; 1977 Nov; 233(5):R243-61. PubMed ID: 411381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical energy expenditure on human movement and the anthropomorphic mechanism].
    Prilutskiĭ BI; Zatsiorskiĭ VM; Petrova LN
    Biofizika; 1992; 37(6):1101-5. PubMed ID: 1298354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between mechanical and physiological energy estimates.
    Williams KR
    Med Sci Sports Exerc; 1985 Jun; 17(3):317-25. PubMed ID: 3894868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power equations in endurance sports.
    van Ingen Schenau GJ; Cavanagh PR
    J Biomech; 1990; 23(9):865-81. PubMed ID: 2211732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and muscular factors affecting the efficiency of human movement.
    Cavanagh PR; Kram R
    Med Sci Sports Exerc; 1985 Jun; 17(3):326-31. PubMed ID: 3894869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of human muscle energy expenditure.
    Umberger BR; Gerritsen KG; Martin PE
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):99-111. PubMed ID: 12745424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and mechanics of terrestrial locomotion.
    Taylor CR; Heglund NC
    Annu Rev Physiol; 1982; 44():97-107. PubMed ID: 7041812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy expenditure during human gait. I - An optimized model.
    Rodrigo S; Garcia I; Franco M; Alonso-Vazquez A; Ambrosio J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4254-7. PubMed ID: 21096641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Walking model with no energy cost.
    Gomes M; Ruina A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):032901. PubMed ID: 21517547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical description of minimum energy expenditure surfaces.
    Winarski DJ; Pearson JR
    J Biomech Eng; 1988 Nov; 110(4):386-91. PubMed ID: 3205024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The efficient learner.
    Almåsbakk B; Whiting HT; Helgerud J
    Biol Cybern; 2001 Feb; 84(2):75-83. PubMed ID: 11205352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some fundamental aspects of the biomechanics of overground versus treadmill locomotion.
    van Ingen Schenau GJ
    Med Sci Sports Exerc; 1980; 12(4):257-61. PubMed ID: 7421475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power requirements and mechanical efficiency of treadmill walking.
    Zarrugh MY
    J Biomech; 1981; 14(3):157-65. PubMed ID: 7240277
    [No Abstract]   [Full Text] [Related]  

  • 20. Energy expenditure and comfort during Nordic walking with different pole lengths.
    Hansen EA; Smith G
    J Strength Cond Res; 2009 Jul; 23(4):1187-94. PubMed ID: 19528847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.