These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3711129)

  • 1. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--III. Mechanical energy expenditure reduction during one link motion.
    Aleshinsky SY
    J Biomech; 1986; 19(4):301-6. PubMed ID: 3711129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--V. The mechanical energy expenditure reduction during motion of the multi-link system.
    Aleshinsky SY
    J Biomech; 1986; 19(4):311-5. PubMed ID: 3711131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--II. Movement of the multi-link chain model.
    Aleshinsky SY
    J Biomech; 1986; 19(4):295-300. PubMed ID: 3711128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--IV. Criticism of the concept of 'energy transfers within and between links'.
    Aleshinsky SY
    J Biomech; 1986; 19(4):307-9. PubMed ID: 3711130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--I. Basic concepts, description of the model, analysis of a one-link system movement.
    Aleshinsky SY
    J Biomech; 1986; 19(4):287-93. PubMed ID: 3711127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure.
    Cavagna GA; Heglund NC; Taylor CR
    Am J Physiol; 1977 Nov; 233(5):R243-61. PubMed ID: 411381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanical energy expenditure on human movement and the anthropomorphic mechanism].
    Prilutskiĭ BI; Zatsiorskiĭ VM; Petrova LN
    Biofizika; 1992; 37(6):1101-5. PubMed ID: 1298354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between mechanical and physiological energy estimates.
    Williams KR
    Med Sci Sports Exerc; 1985 Jun; 17(3):317-25. PubMed ID: 3894868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electromyography as a surrogate for estimating metabolic energy expenditure during locomotion.
    Bruns RE; Vos P; Wedge DRD
    Med Eng Phys; 2022 Nov; 109():103899. PubMed ID: 36371082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prognostic significance of myocardial energy expenditure and myocardial efficiency in patients with heart failure with reduced ejection fraction.
    Cetin MS; Ozcan Cetin EH; Canpolat U; Sasmaz H; Temizhan A; Aydogdu S
    Int J Cardiovasc Imaging; 2018 Feb; 34(2):211-222. PubMed ID: 28808841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A joint-space numerical model of metabolic energy expenditure for human multibody dynamic system.
    Kim JH; Roberts D
    Int J Numer Method Biomed Eng; 2015 Sep; 31(9):e02721. PubMed ID: 25914404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of mass parameters and gear ratio on the speed and energy expenditure of a cyclist.
    Stępniewski AA; Grudziński J
    Acta Bioeng Biomech; 2014; 16(2):47-55. PubMed ID: 25088496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical energy generation, absorption and transfer amongst segments during walking.
    Robertson DG; Winter DA
    J Biomech; 1980; 13(10):845-54. PubMed ID: 7462258
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy expenditure in critically ill children.
    Briassoulis G; Venkataraman S; Thompson AE
    Crit Care Med; 2000 Apr; 28(4):1166-72. PubMed ID: 10809300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait.
    Caldwell GE; Forrester LW
    Med Sci Sports Exerc; 1992 Dec; 24(12):1396-412. PubMed ID: 1470024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of mechanical work and metabolic energy consumption during normal gait.
    Burdett RG; Skrinar GS; Simon SR
    J Orthop Res; 1983; 1(1):63-72. PubMed ID: 6679577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human locomotion analysis: determination of muscular forces and nervous orders.
    Boichut DA; Valentini FA
    Int J Biomed Comput; 1983 May; 14(3):217-30. PubMed ID: 6874132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical energy costs of human movement: an approach to evaluating the transfer possibilities of two-joint muscles.
    Wells RP
    J Biomech; 1988; 21(11):955-64. PubMed ID: 3253282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Galapagos tortoises walk without inverted pendulum mechanical-energy exchange.
    Zani PA; Gottschall JS; Kram R
    J Exp Biol; 2005 Apr; 208(Pt 8):1489-94. PubMed ID: 15802673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centre of mass movement and mechanical energy fluctuation during gallop locomotion in the Thoroughbred racehorse.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2006 Oct; 209(Pt 19):3742-57. PubMed ID: 16985191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.