These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 37111392)
1. The Symbiotic Bacteria- Sanda NB; Hou Y Pathogens; 2023 Mar; 12(4):. PubMed ID: 37111392 [TBL] [Abstract][Full Text] [Related]
2. The Entomopathogenic Nematodes Sanda NB; Hou B; Hou Y Life (Basel); 2022 Jul; 12(7):. PubMed ID: 35888107 [TBL] [Abstract][Full Text] [Related]
3. Exploring the Role of Relish on Antimicrobial Peptide Expressions (AMPs) Upon Nematode-Bacteria Complex Challenge in the Nipa Palm Hispid Beetle, Sanda NB; Hou B; Muhammad A; Ali H; Hou Y Front Microbiol; 2019; 10():2466. PubMed ID: 31736908 [TBL] [Abstract][Full Text] [Related]
4. Entomopathogenic nematode Steinernema carpocapsae surpasses the cellular immune responses of the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae). Sanda NB; Muhammad A; Ali H; Hou Y Microb Pathog; 2018 Nov; 124():337-345. PubMed ID: 30172903 [TBL] [Abstract][Full Text] [Related]
5. Functional conservation and division of two single-carbohydrate-recognition domain C-type lectins from the nipa palm hispid beetle Octodonta nipae (Maulik). Zhang HJ; Lin YP; Liu M; Liang XY; Ji YN; Tang BZ; Hou YM Dev Comp Immunol; 2019 Nov; 100():103416. PubMed ID: 31255631 [TBL] [Abstract][Full Text] [Related]
6. Identification of three prophenoloxidase-activating factors (PPAFs) from an invasive beetle Octodonta nipae Maulik (Coleoptera: Chrysomelidae) and their roles in the prophenoloxidase activation. Zhang H; Tang B; Lin Y; Chen Z; Zhang X; Ji T; Zhang X; Hou Y Arch Insect Biochem Physiol; 2017 Dec; 96(4):. PubMed ID: 28990217 [TBL] [Abstract][Full Text] [Related]
7. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. Kim Y; Ji D; Cho S; Park Y J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640 [TBL] [Abstract][Full Text] [Related]
8. Study on life parameters of the invasive species Octodonta nipae (Coleoptera: Chrysomelidae) on different palm species, under laboratory conditions. Hou Y; Miao Y; Zhang Z J Econ Entomol; 2014 Aug; 107(4):1486-95. PubMed ID: 25195440 [TBL] [Abstract][Full Text] [Related]
9. Pyrosequencing Uncovers a Shift in Bacterial Communities Across Life Stages of Ali H; Muhammad A; Sanda NB; Huang Y; Hou Y Front Microbiol; 2019; 10():466. PubMed ID: 30930872 [TBL] [Abstract][Full Text] [Related]
10. A novel bacterial symbiont association in the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae), their dynamics and phylogeny. Ali H; Muhammad A; Islam SU; Islam W; Hou Y Microb Pathog; 2018 May; 118():378-386. PubMed ID: 29596879 [TBL] [Abstract][Full Text] [Related]
11. The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Cooper D; Wuebbolt C; Heryanto C; Eleftherianos I Mol Immunol; 2019 May; 109():88-98. PubMed ID: 30909122 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome immune analysis of the invasive beetle Octodonta nipae (Maulik) (Coleoptera: Chrysomelidae) parasitized by Tetrastichus brontispae Ferrière (Hymenoptera: Eulophidae). Tang B; Chen J; Hou Y; Meng E PLoS One; 2014; 9(3):e91482. PubMed ID: 24614330 [TBL] [Abstract][Full Text] [Related]
13. Complete mitochondrial genome of nipa palm hispid beetle Yan S; Lyu B; Tang X; Lu H; Tang J; Meng R; Cai B; Yang F Mitochondrial DNA B Resour; 2021; 6(9):2652-2653. PubMed ID: 34435108 [No Abstract] [Full Text] [Related]
15. Role of prophenoloxidase 1 from the beetle Octodonta nipae in melanized encapsulation of a wasp egg. Zhang XF; Cui W; Wang MJ; Zhou Y; Fu TT; Jiang K; Hou YM; Tang BZ Dev Comp Immunol; 2024 Jan; 150():105082. PubMed ID: 37858613 [TBL] [Abstract][Full Text] [Related]
16. Development of Microsatellite Markers for the Nipa Palm Hispid Beetle, Chen Z; Chen J; Zhang X; Hou Y; Wang G Can J Infect Dis Med Microbiol; 2018; 2018():9139306. PubMed ID: 29977416 [TBL] [Abstract][Full Text] [Related]
17. Larvicidal and Growth-Inhibitory Activity of Entomopathogenic Bacteria Culture Fluids Against Aedes aegypti (Diptera: Culicidae). Luiz Rosa da Silva J; Undurraga Schwalm F; Eugênio Silva C; da Costa M; Heermann R; Santos da Silva O J Econ Entomol; 2017 Apr; 110(2):378-385. PubMed ID: 28062794 [TBL] [Abstract][Full Text] [Related]
18. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella. Song CJ; Seo S; Shrestha S; Kim Y J Microbiol Biotechnol; 2011 Mar; 21(3):317-22. PubMed ID: 21464604 [TBL] [Abstract][Full Text] [Related]
19. Imd pathway is involved in the interaction of Drosophila melanogaster with the entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus luminescens. Aymeric JL; Givaudan A; Duvic B Mol Immunol; 2010 Aug; 47(14):2342-8. PubMed ID: 20627393 [TBL] [Abstract][Full Text] [Related]
20. Differential Change Patterns of Main Antimicrobial Peptide Genes During Infection of Entomopathogenic Nematodes and Their Symbiotic Bacteria. Darsouei R; Karimi J; Ghadamyari M; Hosseini M J Parasitol; 2017 Aug; 103(4):349-358. PubMed ID: 28395586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]