BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 3711158)

  • 1. Regional blood-brain glucose transfer in the rat: a novel double-membrane kinetic analysis.
    Cunningham VJ; Hargreaves RJ; Pelling D; Moorhouse SR
    J Cereb Blood Flow Metab; 1986 Jun; 6(3):305-14. PubMed ID: 3711158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose.
    Hargreaves RJ; Planas AM; Cremer JE; Cunningham VJ
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):708-16. PubMed ID: 3793806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracer 2-deoxyglucose kinetics in brain regions of rats given kainic acid.
    Cremer JE; Seville MP; Cunningham VJ
    J Cereb Blood Flow Metab; 1988 Apr; 8(2):244-53. PubMed ID: 3343297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationships between extraction and metabolism of glucose, blood flow, and tissue blood volume in regions of rat brain.
    Cremer JE; Cunningham VJ; Seville MP
    J Cereb Blood Flow Metab; 1983 Sep; 3(3):291-302. PubMed ID: 6874738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimates of Michaelis-Menten constants for the two membranes of the brain endothelium.
    Gjedde A; Christensen O
    J Cereb Blood Flow Metab; 1984 Jun; 4(2):241-9. PubMed ID: 6725434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia.
    Choi IY; Lee SP; Kim SG; Gruetter R
    J Cereb Blood Flow Metab; 2001 Jun; 21(6):653-63. PubMed ID: 11488534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-day starvation does not alter the kinetics of blood--brain barrier transport and phosphorylation of glucose in rat brain.
    Crane PD; Pardridge WM; Braun LD; Oldendorf WH
    J Cereb Blood Flow Metab; 1985 Mar; 5(1):40-6. PubMed ID: 3972922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-tracer study of the fine regional blood-brain glucose transfer in the rat by computer-assisted autoradiography.
    Gjedde A; Diemer NH
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):282-9. PubMed ID: 3988827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid steady-state analysis of blood-brain glucose transfer in rat.
    Gjedde A
    Acta Physiol Scand; 1980 Apr; 108(4):331-9. PubMed ID: 6998256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional cerebrovascular transport of leucine as measured by the in situ brain perfusion technique.
    Smith QR; Takasato Y; Sweeney DJ; Rapoport SI
    J Cereb Blood Flow Metab; 1985 Jun; 5(2):300-11. PubMed ID: 3988829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of alpha-aminoisobutyric acid across brain capillary and cellular membranes.
    Blasberg RG; Fenstermacher JD; Patlak CS
    J Cereb Blood Flow Metab; 1983 Mar; 3(1):8-32. PubMed ID: 6822623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid simultaneous determination of regional blood flow and blood-brain glucose transfer in brain of rat.
    Gjedde A; Hansen AJ; Siemkowicz E
    Acta Physiol Scand; 1980 Apr; 108(4):321-30. PubMed ID: 7415845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct chemical measurement of the lambda of the lumped constant of the [14C]deoxyglucose method in rat brain: effects of arterial plasma glucose level on the distribution spaces of [14C]deoxyglucose and glucose and on lambda.
    Mori K; Cruz N; Dienel G; Nelson T; Sokoloff L
    J Cereb Blood Flow Metab; 1989 Jun; 9(3):304-14. PubMed ID: 2715202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional studies of blood-brain barrier transport of glucose and leucine in awake and anesthetized rats.
    LaManna JC; Harik SI
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):717-23. PubMed ID: 3793807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic analysis of 3-quinuclidinyl 4-[125I]iodobenzilate transport and specific binding to muscarinic acetylcholine receptor in rat brain in vivo: implications for human studies.
    Sawada Y; Hiraga S; Francis B; Patlak C; Pettigrew K; Ito K; Owens E; Gibson R; Reba R; Eckelman W
    J Cereb Blood Flow Metab; 1990 Nov; 10(6):781-807. PubMed ID: 2134838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR determination of intracerebral glucose concentration and transport kinetics in rat brain.
    Mason GF; Behar KL; Rothman DL; Shulman RG
    J Cereb Blood Flow Metab; 1992 May; 12(3):448-55. PubMed ID: 1569138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral transport and metabolism of 1-11C-D-glucose during stepped hypoglycemia.
    Powers WJ; Dagogo-Jack S; Markham J; Larson KB; Dence CS
    Ann Neurol; 1995 Oct; 38(4):599-609. PubMed ID: 7574456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous determination of regional cerebral blood flow and blood--brain glucose transport kinetics in the gerbil.
    Betz AL; Iannotti F
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):193-9. PubMed ID: 6841466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral glucose transport and metabolism in preterm human infants.
    Powers WJ; Rosenbaum JL; Dence CS; Markham J; Videen TO
    J Cereb Blood Flow Metab; 1998 Jun; 18(6):632-8. PubMed ID: 9626187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat.
    Isakovic AJ; Abbott NJ; Redzic ZB
    J Neurochem; 2004 Jul; 90(2):272-86. PubMed ID: 15228584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.