BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37111590)

  • 1. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties-From Suspension to In Vitro Studies.
    Freis B; Ramirez MLA; Kiefer C; Harlepp S; Iacovita C; Henoumont C; Affolter-Zbaraszczuk C; Meyer F; Mertz D; Boos A; Tasso M; Furgiuele S; Journe F; Saussez S; Bégin-Colin S; Laurent S
    Pharmaceutics; 2023 Mar; 15(4):. PubMed ID: 37111590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications.
    Cotin G; Blanco-Andujar C; Perton F; Asín L; de la Fuente JM; Reichardt W; Schaffner D; Ngyen DV; Mertz D; Kiefer C; Meyer F; Spassov S; Ersen O; Chatzidakis M; Botton GA; Hénoumont C; Laurent S; Greneche JM; Teran FJ; Ortega D; Felder-Flesch D; Begin-Colin S
    Nanoscale; 2021 Sep; 13(34):14552-14571. PubMed ID: 34473175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance.
    Sugumaran PJ; Liu XL; Herng TS; Peng E; Ding J
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22703-22713. PubMed ID: 31244027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles.
    Salimi M; Sarkar S; Saber R; Delavari H; Alizadeh AM; Mulder HT
    Cancer Nanotechnol; 2018; 9(1):7. PubMed ID: 30363777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programmed near-infrared light-responsive drug delivery system for combined magnetic tumor-targeting magnetic resonance imaging and chemo-phototherapy.
    Feng Q; Zhang Y; Zhang W; Hao Y; Wang Y; Zhang H; Hou L; Zhang Z
    Acta Biomater; 2017 Feb; 49():402-413. PubMed ID: 27890732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconjugation studies of an EGF-R targeting ligand on dendronized iron oxide nanoparticles to target head and neck cancer cells.
    Freis B; Ramírez MLÁ; Furgiuele S; Journe F; Cheignon C; Charbonnière LJ; Henoumont C; Kiefer C; Mertz D; Affolter-Zbaraszczuk C; Meyer F; Saussez S; Laurent S; Tasso M; Bégin-Colin S
    Int J Pharm; 2023 Mar; 635():122654. PubMed ID: 36720449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity.
    Ryu C; Lee H; Kim H; Hwang S; Hadadian Y; Mohanty A; Park IK; Cho B; Yoon J; Lee JY
    Int J Nanomedicine; 2022; 17():31-44. PubMed ID: 35023918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres.
    Kucharczyk K; Kaczmarek K; Jozefczak A; Slachcinski M; Mackiewicz A; Dams-Kozlowska H
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111654. PubMed ID: 33545822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoresponsive Iron Oxide Nanocubes for an Effective Clinical Translation of Magnetic Hyperthermia and Heat-Mediated Chemotherapy.
    Mai BT; Balakrishnan PB; Barthel MJ; Piccardi F; Niculaes D; Marinaro F; Fernandes S; Curcio A; Kakwere H; Autret G; Cingolani R; Gazeau F; Pellegrino T
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5727-5739. PubMed ID: 30624889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents.
    Çitoğlu S; Coşkun ÖD; Tung LD; Onur MA; Thanh NTK
    Nanomedicine (Lond); 2021 May; 16(11):925-941. PubMed ID: 34015971
    [No Abstract]   [Full Text] [Related]  

  • 13. Dendron based antifouling, MRI and magnetic hyperthermia properties of different shaped iron oxide nanoparticles.
    Cotin G; Blanco-Andujar C; Nguyen DV; Affolter C; Boutry S; Boos A; Ronot P; Uring-Lambert B; Choquet P; Zorn PE; Mertz D; Laurent S; Muller RN; Meyer F; Felder Flesch D; Begin-Colin S
    Nanotechnology; 2019 Sep; 30(37):374002. PubMed ID: 31195384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Porous MnFe
    Zhou X; Lv X; Zhao W; Zhou T; Zhang S; Shi Z; Ye S; Ren L; Chen Z
    RSC Adv; 2018 May; 8(33):18647-18655. PubMed ID: 35541095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia.
    Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y
    Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.
    Xie W; Guo Z; Gao F; Gao Q; Wang D; Liaw BS; Cai Q; Sun X; Wang X; Zhao L
    Theranostics; 2018; 8(12):3284-3307. PubMed ID: 29930730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment.
    Espinosa A; Di Corato R; Kolosnjaj-Tabi J; Flaud P; Pellegrino T; Wilhelm C
    ACS Nano; 2016 Feb; 10(2):2436-46. PubMed ID: 26766814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colloidal polymer-coated Zn-doped iron oxide nanoparticles with high relaxivity and specific absorption rate for efficient magnetic resonance imaging and magnetic hyperthermia.
    Das P; Salvioni L; Malatesta M; Vurro F; Mannucci S; Gerosa M; Antonietta Rizzuto M; Tullio C; Degrassi A; Colombo M; Ferretti AM; Ponti A; Calderan L; Prosperi D
    J Colloid Interface Sci; 2020 Nov; 579():186-194. PubMed ID: 32590159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of Iron Oxide Nanocubes for Enhanced Cancer Hyperthermia and Magnetic Resonance Imaging.
    Cho M; Cervadoro A; Ramirez MR; Stigliano C; Brazdeikis A; Colvin VL; Civera P; Key J; Decuzzi P
    Nanomaterials (Basel); 2017 Mar; 7(4):. PubMed ID: 28350351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.