These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37111819)

  • 1. Lightweight Detection System with Global Attention Network (GloAN) for Rice Lodging.
    Kang G; Wang J; Zeng F; Cai Y; Kang G; Yue X
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of Unmanned Aerial Vehicle Imagery and Deep Learning UNet to Extract Rice Lodging.
    Zhao X; Yuan Y; Song M; Ding Y; Lin F; Liang D; Zhang D
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31500150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring Wheat Lodging at Various Growth Stages.
    Jiang S; Hao J; Li H; Zuo C; Geng X; Sun X
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lightweight Deep Learning Models for High-Precision Rice Seedling Segmentation from UAV-Based Multispectral Images.
    Zhang P; Sun X; Zhang D; Yang Y; Wang Z
    Plant Phenomics; 2023; 5():0123. PubMed ID: 38047001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LodgeNet: an automated framework for precise detection and classification of wheat lodging severity levels in precision farming.
    Ali N; Mohammed A; Bais A; Sangha JS; Ruan Y; Cuthbert RD
    Front Plant Sci; 2023; 14():1255961. PubMed ID: 38093998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Wheat Lodging Extraction from Multi-Channel UAV Images Using a Lightweight Network Model.
    Yang B; Zhu Y; Zhou S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34696038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the lodging risk of rice based on a plant height dynamic model.
    Wu DH; Chen CT; Yang MD; Wu YC; Lin CY; Lai MH; Yang CY
    Bot Stud; 2022 Aug; 63(1):25. PubMed ID: 36008613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xoo-YOLO: a detection method for wild rice bacterial blight in the field from the perspective of unmanned aerial vehicles.
    Pan P; Guo W; Zheng X; Hu L; Zhou G; Zhang J
    Front Plant Sci; 2023; 14():1256545. PubMed ID: 37936939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wheat lodging extraction using Improved_Unet network.
    Yu J; Cheng T; Cai N; Lin F; Zhou XG; Du S; Zhang D; Zhang G; Liang D
    Front Plant Sci; 2022; 13():1009835. PubMed ID: 36247550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning-integrated micro-CT image analysis pipeline for quantifying rice lodging resistance-related traits.
    Wu D; Wu D; Feng H; Duan L; Dai G; Liu X; Wang K; Yang P; Chen G; Gay AP; Doonan JH; Niu Z; Xiong L; Yang W
    Plant Commun; 2021 Mar; 2(2):100165. PubMed ID: 33898978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Copy Paste and Semantic Segmentation-Based Approach for the Classification and Assessment of Significant Rice Diseases.
    Li Z; Chen P; Shuai L; Wang M; Zhang L; Wang Y; Mu J
    Plants (Basel); 2022 Nov; 11(22):. PubMed ID: 36432903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification lodging degree of wheat using point cloud data and convolutional neural network.
    Li Y; Yang B; Zhou S; Cui Q
    Front Plant Sci; 2022; 13():968479. PubMed ID: 36237498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Internet of Unmanned Aerial Vehicles-A Multilayer Low-Altitude Airspace Model for Distributed UAV Traffic Management.
    Labib NS; Danoy G; Musial J; Brust MR; Bouvry P
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31684133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Combining SAR and Optical Optimal Parameters to Classify Typhoon-Invasion Lodged Rice: A Case Study Using the Random Forest Method.
    Wang J; Li K; Shao Y; Zhang F; Wang Z; Guo X; Qin Y; Liu X
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33371381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Rice Lodging Risk from the Distribution of Available Nitrogen in Soil Using UAS Images in a Paddy Field.
    Sato NK; Tsuji T; Iijima Y; Sekiya N; Watanabe K
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Speed Control of Unmanned Aerial Vehicles for Data Collection under Internet of Things.
    Pan Q; Wen X; Lu Z; Li L; Jing W
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30445684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Cognitive Radio with Unmanned Aerial Vehicles: An Overview.
    Dias Santana GM; Cristo RS; Lucas Jaquie Castelo Branco KR
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33513689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UAV IoT Framework Views and Challenges: Towards Protecting Drones as "Things".
    Lagkas T; Argyriou V; Bibi S; Sarigiannidis P
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30453646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unmanned Vehicles' Placement Optimisation for Internet of Things and Internet of Unmanned Vehicles.
    Dragulinescu AM; Halunga S; Zamfirescu C
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed Blockchain-Based Platform for Unmanned Aerial Vehicles.
    Ahamed Ahanger T; Aldaej A; Atiquzzaman M; Ullah I; Yousufudin M
    Comput Intell Neurosci; 2022; 2022():4723124. PubMed ID: 36093501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.