These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37111914)

  • 1. UV-C Promotes the Accumulation of Flavane-3-ols in Juvenile Fruit of Grape through Positive Regulating
    Liang J; Guo J; Liu Y; Zhang Z; Zhou R; Zhang P; Liang C; Wen P
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.
    Bogs J; Jaffé FW; Takos AM; Walker AR; Robinson SP
    Plant Physiol; 2007 Mar; 143(3):1347-61. PubMed ID: 17208963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J; Downey MO; Harvey JS; Ashton AR; Tanner GJ; Robinson SP
    Plant Physiol; 2005 Oct; 139(2):652-63. PubMed ID: 16169968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VvANR silencing promotes expression of VvANS and accumulation of anthocyanin in grape berries.
    Yang B; Wei Y; Liang C; Guo J; Niu T; Zhang P; Wen P
    Protoplasma; 2022 May; 259(3):743-753. PubMed ID: 34448083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional activation of flavan-3-ols biosynthesis in grape berries by UV irradiation depending on developmental stage.
    Zhang ZZ; Che XN; Pan QH; Li XX; Duan CQ
    Plant Sci; 2013 Jul; 208():64-74. PubMed ID: 23683931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leucoanthocyanidin reductase and anthocyanidin reductase gene expression and activity in flowers, young berries and skins of Vitis vinifera L. cv. Cabernet-Sauvignon during development.
    Gagné S; Lacampagne S; Claisse O; Gény L
    Plant Physiol Biochem; 2009 Apr; 47(4):282-90. PubMed ID: 19136268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crops.
    Pfeiffer J; Kühnel C; Brandt J; Duy D; Punyasiri PA; Forkmann G; Fischer TC
    Plant Physiol Biochem; 2006; 44(5-6):323-34. PubMed ID: 16806954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exogenous Application of Non-mature miRNA-Encoded miPEP164c Inhibits Proanthocyanidin Synthesis and Stimulates Anthocyanin Accumulation in Grape Berry Cells.
    Vale M; Rodrigues J; Badim H; Gerós H; Conde A
    Front Plant Sci; 2021; 12():706679. PubMed ID: 34675946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The R2R3MYB VvMYBPA1 from grape reprograms the phenylpropanoid pathway in tobacco flowers.
    Passeri V; Martens S; Carvalho E; Bianchet C; Damiani F; Paolocci F
    Planta; 2017 Aug; 246(2):185-199. PubMed ID: 28299441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry.
    Huang YF; Vialet S; Guiraud JL; Torregrosa L; Bertrand Y; Cheynier V; This P; Terrier N
    New Phytol; 2014 Feb; 201(3):795-809. PubMed ID: 24147899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants.
    Li H; Tian J; Yao YY; Zhang J; Song TT; Li KT; Yao YC
    Plant Physiol Biochem; 2019 Jun; 139():141-151. PubMed ID: 30889479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W
    BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple.
    Liao L; Vimolmangkang S; Wei G; Zhou H; Korban SS; Han Y
    Front Plant Sci; 2015; 6():243. PubMed ID: 25914714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proanthocyanidin Synthesis in Chinese Bayberry (
    Shi L; Cao S; Chen X; Chen W; Zheng Y; Yang Z
    Front Plant Sci; 2018; 9():212. PubMed ID: 29541082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VvLAR1 and VvLAR2 Are Bifunctional Enzymes for Proanthocyanidin Biosynthesis in Grapevine.
    Yu K; Jun JH; Duan C; Dixon RA
    Plant Physiol; 2019 Jul; 180(3):1362-1374. PubMed ID: 31092697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (Vitis vinifera L.).
    Poudel PR; Koyama K; Goto-Yamamoto N
    Mol Biol Rep; 2020 May; 47(5):3501-3510. PubMed ID: 32306142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis.
    Wang P; Zhang L; Jiang X; Dai X; Xu L; Li T; Xing D; Li Y; Li M; Gao L; Xia T
    Planta; 2018 Jan; 247(1):139-154. PubMed ID: 28887677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.
    Kim YB; Thwe AA; Kim Y; Li X; Cho JW; Park PB; Valan Arasu M; Abdullah Al-Dhabi N; Kim SJ; Suzuki T; Hyun Jho K; Park SU
    ScientificWorldJournal; 2014; 2014():726567. PubMed ID: 24605062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation.
    Xi H; Ma L; Liu G; Wang N; Wang J; Wang L; Dai Z; Li S; Wang L
    PLoS One; 2014; 9(12):e113772. PubMed ID: 25464056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flavan-3-ols in Norway spruce: biosynthesis, accumulation, and function in response to attack by the bark beetle-associated fungus Ceratocystis polonica.
    Hammerbacher A; Paetz C; Wright LP; Fischer TC; Bohlmann J; Davis AJ; Fenning TM; Gershenzon J; Schmidt A
    Plant Physiol; 2014 Apr; 164(4):2107-22. PubMed ID: 24550241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.