These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37111970)

  • 41. Halide Perovskites for Tandem Solar Cells.
    Lee JW; Hsieh YT; De Marco N; Bae SH; Han Q; Yang Y
    J Phys Chem Lett; 2017 May; 8(9):1999-2011. PubMed ID: 28422510
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An investigation into the effects of band gap and doping concentration on Cu(In,Ga)Se2 solar cell efficiency.
    Asaduzzaman M; Hasan M; Bahar AN
    Springerplus; 2016; 5():578. PubMed ID: 27247875
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-performance perovskite/Cu(In,Ga)Se
    Han Q; Hsieh YT; Meng L; Wu JL; Sun P; Yao EP; Chang SY; Bae SH; Kato T; Bermudez V; Yang Y
    Science; 2018 Aug; 361(6405):904-908. PubMed ID: 30166487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cd-free CIGS solar cells with buffer layer based on the In2S3 derivatives.
    Kim K; Larina L; Yun JH; Yoon KH; Kwon H; Ahn BT
    Phys Chem Chem Phys; 2013 Jun; 15(23):9239-44. PubMed ID: 23657475
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly efficient graphene-based Cu(In, Ga)Se₂ solar cells with large active area.
    Yin L; Zhang K; Luo H; Cheng G; Ma X; Xiong Z; Xiao X
    Nanoscale; 2014 Sep; 6(18):10879-86. PubMed ID: 25117579
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells.
    Pianezzi F; Reinhard P; Chirilă A; Bissig B; Nishiwaki S; Buecheler S; Tiwari AN
    Phys Chem Chem Phys; 2014 May; 16(19):8843-51. PubMed ID: 24675872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells.
    Dou L; Gao J; Richard E; You J; Chen CC; Cha KC; He Y; Li G; Yang Y
    J Am Chem Soc; 2012 Jun; 134(24):10071-9. PubMed ID: 22640170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thin-film copper indium gallium selenide solar cell based on low-temperature all-printing process.
    Singh M; Jiu J; Sugahara T; Suganuma K
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16297-303. PubMed ID: 25180569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate.
    Moon S; Kim K; Kim Y; Heo J; Lee J
    Sci Rep; 2016 Jul; 6():30107. PubMed ID: 27435899
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced fill factor of tandem organic solar cells incorporating a diketopyrrolopyrrole-based low-bandgap polymer and optimized interlayer.
    Wang DH; Kyaw AK; Park JH
    ChemSusChem; 2015 Jan; 8(2):331-6. PubMed ID: 25404201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light.
    Khanam JJ; Foo SY
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960367
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly Flexible and Efficient All-Polymer Solar Cells with High-Viscosity Processing Polymer Additive toward Potential of Stretchable Devices.
    Chen S; Jung S; Cho HJ; Kim NH; Jung S; Xu J; Oh J; Cho Y; Kim H; Lee B; An Y; Zhang C; Xiao M; Ki H; Zhang ZG; Kim JY; Li Y; Park H; Yang C
    Angew Chem Int Ed Engl; 2018 Oct; 57(40):13277-13282. PubMed ID: 30113743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optoelectronic simulation of a four-terminal all-inorganic CsPbI
    Wang D; Yao S; Zhong Y; Peng L; Shi T; Chen J; Liu X; Lin J
    Phys Chem Chem Phys; 2022 Sep; 24(37):22746-22755. PubMed ID: 36111602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-Efficiency Cu(In,Ga)Se₂ Thin Film Solar Cells Using ZnS and CdS Buffer Layers.
    Jun BM; Kim G; Kim E; Kim H; Lee DJ; Kim HS; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1814-1819. PubMed ID: 30469273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.
    Bag S; Patel RJ; Bunha A; Grand C; Berrigan JD; Dalton MJ; Leever BJ; Reynolds JR; Durstock MF
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):16-9. PubMed ID: 26699653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Perovskite-based tandem solar cells.
    Fang Z; Zeng Q; Zuo C; Zhang L; Xiao H; Cheng M; Hao F; Bao Q; Zhang L; Yuan Y; Wu WQ; Zhao D; Cheng Y; Tan H; Xiao Z; Yang S; Liu F; Jin Z; Yan J; Ding L
    Sci Bull (Beijing); 2021 Mar; 66(6):621-636. PubMed ID: 36654432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of solution processed 3D nanostructured CuInGaS₂ thin film solar cells.
    Chu VB; Cho JW; Park SJ; Hwang YJ; Park HK; Do YR; Min BK
    Nanotechnology; 2014 Mar; 25(12):125401. PubMed ID: 24569126
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Design of an Efficient PTB7:PC70BM-Based Polymer Solar Cell for 8% Efficiency.
    Alahmadi ANM
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267712
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantum-Dot Tandem Solar Cells Based on a Solution-Processed Nanoparticle Intermediate Layer.
    Hu L; Wang Y; Shivarudraiah SB; Yuan J; Guan X; Geng X; Younis A; Hu Y; Huang S; Wu T; Halpert JE
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2313-2318. PubMed ID: 31840973
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fingerprints Indicating Superior Properties of Internal Interfaces in Cu(In,Ga)Se
    Raghuwanshi M; Chugh M; Sozzi G; Kanevce A; Kühne TD; Mirhosseini H; Wuerz R; Cojocaru-Mirédin O
    Adv Mater; 2022 Sep; 34(37):e2203954. PubMed ID: 35900293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.