These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37112070)

  • 1. Wood-Derived Polymers from Olefin-Functionalized Lignin and Ethyl Cellulose via Thiol-Ene Click Chemistry.
    An R; Liu C; Wang J; Jia P
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.
    Buono P; Duval A; Averous L; Habibi Y
    ChemSusChem; 2017 Mar; 10(5):984-992. PubMed ID: 28042912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and Characterization of Thiol-Ene Networks Derived from Levoglucosenone.
    Timilsina MP; Stanfield MK; Smith JA; Thickett SC
    Chempluschem; 2024 Oct; 89(10):e202400383. PubMed ID: 39190021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers.
    An S; Jeon B; Bae JH; Kim IS; Paeng K; Kim M; Lee H
    Carbohydr Polym; 2019 Dec; 226():115259. PubMed ID: 31582070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Click Step-Growth Polymerization and
    Worch JC; Dove AP
    Acc Chem Res; 2022 Sep; 55(17):2355-2369. PubMed ID: 36006902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and Characterization of Thermally Stable Lignosulfonamides.
    Komisarz K; Majka TM; Kurczab M; Pielichowski K
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Click chemistry-induced modification of acrylated cellulose nanocrystals for application in PVA-based nanocomposites.
    Fan J; Fan X; Guo Y; Wang Y; Xiao Z; Wang H; Liang D; Xie Y
    Carbohydr Polym; 2022 Dec; 297():120031. PubMed ID: 36184176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.
    Dong Y; Mosquera-Giraldo LI; Taylor LS; Edgar KJ
    Biomacromolecules; 2016 Feb; 17(2):454-65. PubMed ID: 26714234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface modification of cellulose via photo-induced click reaction.
    Liang H; Yin D; Shi L; Liu Y; Hu X; Zhu N; Guo K
    Carbohydr Polym; 2023 Feb; 301(Pt B):120321. PubMed ID: 36446489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.
    Baroncini EA; Stanzione JF
    Int J Biol Macromol; 2018 Jul; 113():1041-1051. PubMed ID: 29505870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and mechanical roles of wood polymer assemblies in softwood revealed by gradual removal of polysaccharides or lignin.
    Kurei T; Sakai S; Nakaba S; Funada R; Horikawa Y
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129270. PubMed ID: 38199531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of lignin-modified cellulose nanocrystals with antioxidant activity via Diels-Alder reaction and its application in carboxymethyl cellulose film.
    An L; Chen J; Heo JW; Bae JH; Jeong H; Kim YS
    Carbohydr Polym; 2021 Nov; 274():118651. PubMed ID: 34702470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced hydrophobic paper-sheet derived from Miscanthus × giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend.
    Singh SS; Zaitoon A; Sharma S; Manickavasagan A; Lim LT
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1243-1256. PubMed ID: 36395932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viability of Low Molecular Weight Lignin in Developing Thiol-Ene Polymer Electrolytes with Balanced Thermomechanical and Conductive Properties.
    Baroncini EA; Rousseau DM; Strekis CA; Stanzione JF
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000477. PubMed ID: 33200480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-responsive nanoparticles from ionic cellulose derivatives.
    Wang Y; Heinze T; Zhang K
    Nanoscale; 2016 Jan; 8(1):648-57. PubMed ID: 26645347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly(butadiene) in cross-linked composites based on thiol-ene click chemistry.
    Rosilo H; Kontturi E; Seitsonen J; Kolehmainen E; Ikkala O
    Biomacromolecules; 2013 May; 14(5):1547-54. PubMed ID: 23506469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile fabrication of cross-linked fluorescent organic nanoparticles with aggregation-induced emission characteristic via the thiol-ene click reaction and their potential for biological imaging.
    Wang T; Liu M; Xu D; Chen J; Wan Q; Wen Y; Huang H; Deng F; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():293-299. PubMed ID: 30813030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable Fatty Acid Modification of Cellulose in a CO
    Esen E; Hädinger P; Meier MAR
    Biomacromolecules; 2021 Feb; 22(2):586-593. PubMed ID: 33289549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Post-modification of Cellulose Nanocrystal Aerogels with Thiol-Ene Click Chemistry.
    Aalbers GJW; Boott CE; D'Acierno F; Lewis L; Ho J; Michal CA; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2019 Jul; 20(7):2779-2785. PubMed ID: 31244013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface Grafting of Functionalized Poly(thiophene)s Using Thiol-Ene Click Chemistry for Thin Film Stabilization.
    Martin KL; Nyquist Y; Burnett EK; Briseno AL; Carter KR
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30543-30551. PubMed ID: 27797483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.