These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 37112073)

  • 1. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions.
    Tony A; Badea I; Yang C; Liu Y; Wells G; Wang K; Yin R; Zhang H; Zhang W
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused Filament Fabrication (FFF) for Manufacturing of Microfluidic Micromixers: An Experimental Study on the Effect of Process Variables in Printed Microfluidic Micromixers.
    Zeraatkar M; de Tullio MD; Percoco G
    Micromachines (Basel); 2021 Jul; 12(8):. PubMed ID: 34442481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating self-powered microfluidic devices via 3D printing for manipulating fluid flow.
    Woo SO; Oh M; Choi Y
    STAR Protoc; 2022 Jun; 3(2):101376. PubMed ID: 35573475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printed mold leachates in PDMS microfluidic devices.
    de Almeida Monteiro Melo Ferraz M; Nagashima JB; Venzac B; Le Gac S; Songsasen N
    Sci Rep; 2020 Jan; 10(1):994. PubMed ID: 31969661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low Cost, Ease-of-Access Fabrication of Microfluidic Devices Using Wet Paper Molds.
    Thakur R; Fridman GY
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of truly 3D microfluidic channel using 3D-printed soluble mold.
    Kang K; Oh S; Yi H; Han S; Hwang Y
    Biomicrofluidics; 2018 Jan; 12(1):014105. PubMed ID: 29375726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel abrasive water jet machining technique for rapid fabrication of three-dimensional microfluidic components.
    Azarsa E; Jeyhani M; Ibrahim A; Tsai SSH; Papini M
    Biomicrofluidics; 2020 Jul; 14(4):044103. PubMed ID: 32670461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging 3D printing technologies and methodologies for microfluidic development.
    Monia Kabandana GK; Zhang T; Chen C
    Anal Methods; 2022 Aug; 14(30):2885-2906. PubMed ID: 35866586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyping of polydimethylsiloxane (PDMS) microchips using electrohydrodynamic jet printing: Application to electrokinetic assays.
    Choubey A; Dubey K; Bahga SS
    Electrophoresis; 2023 Apr; 44(7-8):725-732. PubMed ID: 36774545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Organ-on-A-chip: A Guide to Biomaterial Choice and Fabrication.
    Cao UMN; Zhang Y; Chen J; Sayson D; Pillai S; Tran SD
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of 3D-Printed Moulds for Soft Lithography of Millifluidic Devices.
    Mohd Fuad N; Carve M; Kaslin J; Wlodkowic D
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing.
    Srinivasaraghavan Govindarajan R; Sikulskyi S; Ren Z; Stark T; Kim D
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing 3D-Printed Microfluidics: Characterization of a Gas-Permeable, High-Resolution PDMS Resin for Stereolithography.
    Fleck E; Sunshine A; DeNatale E; Keck C; McCann A; Potkay J
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.