BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37112120)

  • 1. Geant4 Simulation of the Effect of Different Composites on Polyimide Photon and Neutron Shielding Properties.
    Akhdar H; Alotaibi R
    Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Investigation of Gamma- and Neutron-Shielding Properties of Polysulfone (PSU) Polymer Material Using Geant4.
    Akhdar H
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geant4 Simulation of Photon- and Neutron-Shielding Capabilities of Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate).
    Akhdar H; Alshehri M
    Polymers (Basel); 2023 Oct; 15(21):. PubMed ID: 37959937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed investigation of gamma and neutron shielding capabilities of ternary composites doped with polyacrylonitrile and gadolinium (III) sulfate.
    Erkoyuncu I; Akman F; Ogul H; Kaçal MR; Polat H; Demirkol I; Dilsiz K; Ertuğral B
    Appl Radiat Isot; 2023 Jun; 196():110789. PubMed ID: 36996534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the Design, Preparation, and Performance Evaluation of Heat-Resistant Interlayer-Polyimide-Resin-Based Neutron-Shielding Materials.
    Xu H; Liu D; Sun WQ; Wu RJ; Liao W; Li XL; Hu G; Hu HS
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation shielding performance of metal oxides/EPDM rubber composites using Geant4 simulation and computational study.
    Alabsy MT; Elzaher MA
    Sci Rep; 2023 May; 13(1):7744. PubMed ID: 37173378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Investigation of Fast Neutron and Gamma Radiation Properties of Polycarbonate-Bismuth Oxide Composites Using Geant4.
    Akhdar H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative neutron and gamma-ray radiation shielding investigation of molybdenum and boron filled polymer composites.
    Oğul H; Agar O; Bulut F; Kaçal MR; Dilsiz K; Polat H; Akman F
    Appl Radiat Isot; 2023 Apr; 194():110731. PubMed ID: 36812766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fe-nanoparticle effect on polypropylene for effective radiation protection: Simulation and theoretical study.
    Alshipli M; Aladailah MW; Marashdeh MW; Oglat AA; Akhdar H; Tashlykov OL; Banat R; Walaa AT
    Med Eng Phys; 2023 Nov; 121():104066. PubMed ID: 37985023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UPR/Titanium dioxide nanocomposite: Preparation, characterization and application in photon/neutron shielding.
    More CV; Botewad SN; Akman F; Agar O; Pawar PP
    Appl Radiat Isot; 2023 Apr; 194():110688. PubMed ID: 36706516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation shielding assessment of high-energy proton imaging at a proton therapy facility.
    Penfold SN
    Med Phys; 2022 Aug; 49(8):5340-5346. PubMed ID: 35611603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron and Photon Dose Rates in a D-T Neutron Generator Facility: MCNP Simulations and Experiments.
    Xu X; Yi C; Wanyue T; Yuanming S; Jingbin L; Yumin L; Long Z; Jiaxi L; Xiaoyi L
    Health Phys; 2020 Jun; 118(6):600-608. PubMed ID: 31972689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rare-Earth Oxides as Alternative High-Energy Photon Protective Fillers in HDPE Composites: Theoretical Aspects.
    Saenboonruang K; Poltabtim W; Thumwong A; Pianpanit T; Rattanapongs C
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34200711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological polymeric shielding design for an X-ray laboratory using Monte Carlo codes.
    Tajudin SM; Tabbakh F
    Radiol Phys Technol; 2019 Sep; 12(3):299-304. PubMed ID: 31302871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of accelerator-produced leakage neutron and photon transmission through concrete.
    Kase KR; Nelson WR; Fasso A; Liu JC; Mao X; Jenkins TM; Kleck JH
    Health Phys; 2003 Feb; 84(2):180-7. PubMed ID: 12553647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EXPERIMENTAL EVALUATION OF NEUTRON SHIELDING MATERIALS.
    Campo X; Méndez R; Lacerda MAS; Garrido D; Embid M; Sanz J
    Radiat Prot Dosimetry; 2018 Aug; 180(1-4):382-385. PubMed ID: 29036700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and radiation shielding properties of polyimide/Bi
    Pavlenko VI; Cherkashina NI; Yastrebinsky RN
    Heliyon; 2019 May; 5(5):e01703. PubMed ID: 31193189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations.
    Mesbahi A; Ghiasi H
    Appl Radiat Isot; 2018 Jun; 136():27-31. PubMed ID: 29455112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition Metal Borides for All-in-One Radiation Shielding.
    Avcıoğlu C; Avcıoğlu S
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.