These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37112288)

  • 41. Surface plasmon resonance refractive index sensor based on fiber-interface waveguide inscribed by femtosecond laser.
    Zhang Y; Liao C; Lin C; Shao Y; Wang Y; Wang Y
    Opt Lett; 2019 May; 44(10):2434-2437. PubMed ID: 31090700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Versatile Optofluidic Solid-Core/Liquid-Cladding Waveguide Based on Evanescent Wave Excitation.
    Zhang Y; Kenarangi F; Zhang H; Vaziri S; Li D; Pu X; Sun Y
    Anal Chem; 2020 Nov; 92(22):14983-14989. PubMed ID: 33108157
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Integrated Young interferometer sensor with a channel-planar composite waveguide sensing arm.
    Qi ZM; Zhao S; Chen F; Xia S
    Opt Lett; 2009 Jul; 34(14):2213-5. PubMed ID: 19823552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Silver Nanoparticle Chains for Ultra-Long-Range Plasmonic Waveguides for Nd
    Fernández-Martínez J; Carretero-Palacios S; Molina P; Bravo-Abad J; Ramírez MO; Bausá LE
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500918
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiation forces on a Mie particle in the evanescent field of a resonance waveguide structure.
    Rezaei S; Azami D; Kheirandish F; Hassanzadeh A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2054-2062. PubMed ID: 36520702
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evanescent field Sensors Based on Tantalum Pentoxide Waveguides - A Review.
    Schmitt K; Oehse K; Sulz G; Hoffmann C
    Sensors (Basel); 2008 Jan; 8(2):711-738. PubMed ID: 27879731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures.
    Kinzel EC; Xu X
    Opt Express; 2009 May; 17(10):8036-45. PubMed ID: 19434135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-Chip Spiral Waveguides for Ultrasensitive and Rapid Detection of Nanoscale Objects.
    Tang SJ; Liu S; Yu XC; Song Q; Gong Q; Xiao YF
    Adv Mater; 2018 Jun; 30(25):e1800262. PubMed ID: 29707858
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Observing secretory granules with a multiangle evanescent wave microscope.
    Rohrbach A
    Biophys J; 2000 May; 78(5):2641-54. PubMed ID: 10777760
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy.
    Dhakal A; Peyskens F; Clemmen S; Raza A; Wuytens P; Zhao H; Le Thomas N; Baets R
    Interface Focus; 2016 Aug; 6(4):20160015. PubMed ID: 27499842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Graphene-based Y-branch laser in femtosecond laser written Nd:YAG waveguides.
    Liu H; Cheng C; Romero C; Vázquez de Aldana JR; Chen F
    Opt Express; 2015 Apr; 23(8):9730-5. PubMed ID: 25969011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfabricated polymer chip with integrated U-bend waveguides for evanescent field absorption based detection.
    Prabhakar A; Mukherji S
    Lab Chip; 2010 Mar; 10(6):748-54. PubMed ID: 20221563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers.
    Wang X; Kim SS; Rossbach R; Jetter M; Michler P; Mizaikoff B
    Analyst; 2012 May; 137(10):2322-7. PubMed ID: 22249166
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass.
    Bérubé JP; Vallée R
    Opt Lett; 2016 Jul; 41(13):3074-7. PubMed ID: 27367105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A nanotweezer system for evanescent wave excited surface enhanced Raman spectroscopy (SERS) of single nanoparticles.
    Kong L; Lee C; Earhart CM; Cordovez B; Chan JW
    Opt Express; 2015 Mar; 23(5):6793-802. PubMed ID: 25836898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence.
    Mattheyses AL; Axelrod D
    J Biomed Opt; 2006; 11(1):014006. PubMed ID: 16526883
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optical properties of V-groove silicon nitride trench waveguides.
    Zhao Q; Huang Y; Boyraz O
    J Opt Soc Am A Opt Image Sci Vis; 2016 Sep; 33(9):1851-9. PubMed ID: 27607510
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evanescent-wave coupling phase-matching for ultrawidely tunable frequency conversion in silicon-waveguide chips.
    Liu Y; Wu C; Qiang X; Wu J; Yang X; Xu P
    Opt Express; 2019 Sep; 27(20):28866-28878. PubMed ID: 31684631
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fabrication of a cyclic olefin copolymer planar waveguide embedded in a multi-channel poly(methyl methacrylate) fluidic chip for evanescence excitation.
    Okagbare PI; Emory JM; Datta P; Goettert J; Soper SA
    Lab Chip; 2010 Jan; 10(1):66-73. PubMed ID: 20024052
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of gold nanoparticles and live cells interactions by using planar evanescent wave excitation.
    Lee CW; Lin EH; Cheng JY; Wei PK
    J Biomed Opt; 2009; 14(2):021005. PubMed ID: 19405718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.