These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37112339)

  • 1. A Machine Learning Pipeline for Gait Analysis in a Semi Free-Living Environment.
    Jung S; de l'Escalopier N; Oudre L; Truong C; Dorveaux E; Gorintin L; Ricard D
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive Change-Point Detection for Studying Human Locomotion.
    Jung S; Oudre L; Truong C; Dorveaux E; Gorintin L; Vayatis N; Ricard D
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():2020-2024. PubMed ID: 34891684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Evaluation of Feature Encoding Techniques for Gait Analysis Using Multimodal Sensory Data.
    Fatima R; Khan MH; Nisar MA; Doniec R; Farid MS; Grzegorzek M
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower Limb Locomotion Activity Recognition of Healthy Individuals Using Semi-Markov Model and Single Wearable Inertial Sensor.
    Li H; Derrode S; Pieczynski W
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning based Human Gait Segmentation with Wearable Sensor Platform.
    Potluri S; Chandran AB; Diedrich C; Schega L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():588-594. PubMed ID: 31945967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Gait Activity Recognition Machine Learning Methods.
    Slemenšek J; Fister I; Geršak J; Bratina B; van Midden VM; Pirtošek Z; Šafarič R
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU, sEMG, or their cross-correlation and temporal similarities: Which signal features detect lateral compensatory balance reactions more accurately?
    Nouredanesh M; Tung J
    Comput Methods Programs Biomed; 2019 Dec; 182():105003. PubMed ID: 31465977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait Stride Length Estimation Using Embedded Machine Learning.
    Verbiest JR; Bonnechère B; Saeys W; Van de Walle P; Truijen S; Meyns P
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of Gait From Continuous Inertial Sensor Data Using Harmonic Frequencies.
    Ullrich M; Kuderle A; Hannink J; Din SD; Gasner H; Marxreiter F; Klucken J; Eskofier BM; Kluge F
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1869-1878. PubMed ID: 32086225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freezing-of-Gait Detection Using Wearable Sensor Technology and Possibilistic K-Nearest-Neighbor Algorithm.
    Tahafchi P; Judy JW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4246-4249. PubMed ID: 31946806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Human Gait Phases Using Textile Pressure Sensors: A Low Cost and Pervasive Approach.
    Milovic M; Farías G; Fingerhuth S; Pizarro F; Hermosilla G; Yunge D
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discriminating progressive supranuclear palsy from Parkinson's disease using wearable technology and machine learning.
    De Vos M; Prince J; Buchanan T; FitzGerald JJ; Antoniades CA
    Gait Posture; 2020 Mar; 77():257-263. PubMed ID: 32078894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of gait events and kinetic waveforms with wearable sensors and machine learning when running in an unconstrained environment.
    Donahue SR; Hahn ME
    Sci Rep; 2023 Feb; 13(1):2339. PubMed ID: 36759681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait.
    Bernhart S; Kranzinger S; Berger A; Peternell G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel single-sensor-based method for the detection of gait-cycle breakdown and freezing of gait in Parkinson's disease.
    Chomiak T; Xian W; Pei Z; Hu B
    J Neural Transm (Vienna); 2019 Aug; 126(8):1029-1036. PubMed ID: 31154512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.